Main Article Content

Abstract

This research is aimed to provide insight on the dependency of tensile strength on process parameters of the Fused Deposition Modeling (FDM). FDM is one of the most popular 3D printing manufacturing techniques. In the present study, a tensile test was performed to measure the tensile strength of PETG (Polyethylene terephthalate glycol) specimen with the combination of different layer height, infill geometry, nozzle temperature, and fan speed whereas other parameters are kept at a constant level. This study uses the ISO 527 1BA standard. Taguchi L16 (44) with 4 levels for each factor was used to determine the effect of each parameter. Each experiment repeated 3 times to minimize the occurrence of errors. layer height, infill geometry, nozzle temperature, and fan speed ​​respectively effect of 13.4%, 63.6%, 19.0%, and 2.7%. Fan speed is considered a parameter that has no impact on tensile strength. The layer height and nozzle temperature parameter shows that the higher the value, the tensile strength of specimens tend to increase. Furthermore, infill geometry from the one with the highest to the lowest tensile strength value is gyroid, zig-zag, grid, and triangles. The combination of layer height of 0.24 mm, infill geometry gyroid, and nozzle temperature of 250 ˚C is the optimum combination of parameters which has the highest tensile strength of 34.76 N/mm2.

Keywords

FDM 3D printing PETG tensile strength

Article Details

Author Biographies

Mahatma Junjung Mardlotila, UNIVERSITAS JEMBER

Mahatma Junjung Mardlotila

Dedi Dwilaksana, UNIVERSITAS JEMBER

Dedi DwiLaksana

Hari Arbiantara Basuki, UNIVERSITAS JEMBER

Hari Arbiantara Basuki

How to Cite
Mardlotila, M., Trifiananto, M., Dwilaksana, D., Basuki, H., Kustanto, M., & Hardiatama, I. (2022). Effect of layer height, infill geometry, nozzle temperature, and fan speed on tensile strength of 3D printing PETG specimens. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 22(3), 149-158. https://doi.org/https://doi.org/10.24036/invotek.v22i3.1045

References

  1. R. Nur and M. A. Suyuti, Pengantar Sistem Manufaktur. Deepublish, 2017.
  2. P. Pristiansyah, H. Hasdiansah, and S. Sugiyarto, “Optimasi Parameter Proses 3D Printing FDM Terhadap Akurasi Dimensi Menggunakan Filament Eflex,” Manutech J. Teknol. Manufaktur, vol. 11, no. 01, 2019, doi: 10.33504/manutech.v11i01.98.
  3. P. WANG, B. ZOU, S. DING, L. LI, and C. HUANG, “Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK,” Chinese J. Aeronaut., vol. 34, no. 9, 2021, doi: 10.1016/j.cja.2020.05.040.
  4. A. A. Ansari and M. Kamil, “Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process,” in Materials Today: Proceedings, 2021, vol. 45, doi: 10.1016/j.matpr.2021.02.137.
  5. “History of plastics • Plastics Europe.” https://plasticseurope.org/plastics-explained/history-of-plastics/ (accessed Feb. 13, 2023).
  6. K. Durgashyam, M. Indra Reddy, A. Balakrishna, and K. Satyanarayana, “Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method,” in Materials Today: Proceedings, 2019, vol. 18, doi: 10.1016/j.matpr.2019.06.082.
  7. T. Panneerselvam, S. Raghuraman, and N. Vamsi Krishnan, “Investigating Mechanical Properties of 3D-Printed Polyethylene Terephthalate Glycol Material Under Fused Deposition Modeling,” J. Inst. Eng. Ser. C, vol. 102, no. 2, 2021, doi: 10.1007/s40032-020-00646-8.
  8. D. Yadav, D. Chhabra, R. K. Gupta, A. Phogat, and A. Ahlawat, “Modeling and analysis of significant process parameters of FDM 3D printer using ANFIS,” in Materials Today: Proceedings, 2020, vol. 21, doi: 10.1016/j.matpr.2019.11.227.
  9. R. Srinivasan, W. Ruban, A. Deepanraj, R. Bhuvanesh, and T. Bhuvanesh, “Effect on infill density on mechanical properties of PETG part fabricated by fused deposition modelling,” in Materials Today: Proceedings, 2020, vol. 27, doi: 10.1016/j.matpr.2020.03.797.
  10. R. Srinivasan, K. Nirmal Kumar, A. Jenish Ibrahim, K. V. Anandu, and R. Gurudhevan, “Impact of fused deposition process parameter (infill pattern) on the strength of PETG part,” in Materials Today: Proceedings, 2020, vol. 27, doi: 10.1016/j.matpr.2020.03.777.
  11. M. A. Kumar, M. S. Khan, and S. B. Mishra, “Effect of fused deposition machine parameters on tensile strength of printed carbon fiber reinforced pla thermoplastics,” in Materials Today: Proceedings, 2020, vol. 27, doi: 10.1016/j.matpr.2020.03.033.
  12. C. Y. Lee and C. Y. Liu, “The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication,” Addit. Manuf., vol. 25, pp. 196–203, Jan. 2019, doi: 10.1016/J.ADDMA.2018.11.012.
  13. I. Soejanto, Desain eksperimen dengan metode Taguchi. Yogyakarta : Graha Ilmu, 2009.
  14. Esun, “Best PETG Filament 2022 3D Printer PETG Materials eSUN3D.” https://www.esun3d.com/petg-product/ (accessed Sep. 16, 2022).
  15. S. Guessasma, S. Belhabib, and H. Nouri, “Printability and tensile performance of 3D printed polyethylene terephthalate glycol using fused deposition modelling,” Polymers (Basel)., vol. 11, no. 7, 2019, doi: 10.3390/polym11071220.
  16. M. Bembenek, Ł. Kowalski, and A. Kosoń-Schab, “Research on the Influence of Processing Parameters on the Specific Tensile Strength of FDM Additive Manufactured PET-G and PLA Materials,” Polymers, vol. 14, no. 12. 2022, doi: 10.3390/polym14122446.