Main Article Content


They are using a passenger ship prototype as an experiment in control systems. Ship prototype control system with remote control. For this reason, research was carried out on the workings of ship prototypes, maneuver speed, long distance to the ship, and battery capacity expiration time. For this reason, research was carried out on how the prototype ship worked, the maneuvering speed, the remote reach distance to the boat, and the time the battery capacity would run out. The research was conducted using a rope, stopwatch, arc ruler, and test object. Using this tool, the results of the ship's speed when maneuvering at a predetermined angle, the maximum range of remote distance to the boat, and the length of time the battery capacity will run out. The research results tested on the remote control (RC) prototype ship showed the highest maneuvering speed at an angle of 90 degrees, which is 0.407 m/s, and the lowest rate at an angle of 180 degrees, 0.376 m/s. With this, it can be concluded that the smaller the angle of maneuver, the faster the speed of the ship to maneuver, and the greater the grade of the scheme, the slower the rate. Furthermore, the farther the remote control operating distance is from the battery speed, the faster the battery capacity will run out, and the closer the ship's rotational variation distance, the more the battery capacity will run out.


Prototype Ship Remote Control Maneuvering Angle Maneuvering Speed Battery Capacity

Article Details

How to Cite
Anugrah, R. (2023). Analysis of Maneuvering Speed of a Passenger Ship Scalability Prototype with a Remote-Control System. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 22(3), 159-168.


  1. S. T. Sulistiyono, “Paradigma Maritim dalam Membangun Indonesia: Belajar dari Sejarah,”Lembaran Sej., vol. 12, no. 2, p. 81, 2018, doi: 10.22146/lembaran-sejarah.33461.
  2. R. Erwin, “Transportasi Menurut Hukum Internasional Dan Hukum Indonesia,” vol. 4, no. 2, pp. 177–199, 2022.
  3. N. Sun, Y. Fang, H. Chen, Y. Fu, and B. Lu, "Nonlinear Stabilizing Control for Ship-Mounted Cranes with Ship Roll and Heave Movements: Design, Analysis, and Experiments," IEEE Trans.Syst.Man,Cybern.Syst.,vol.48,no.10,pp.1781–1793,2018,doi:10.1109/TSMC.2017.2700393.
  4. K. Wróbel, J. Montewka, and P. Kujala, "System-theoretic approach to safety of remotely- controlled merchant vessel," Ocean Eng., vol. 152, no. September 2017, pp. 334–345, 2018, doi: 10.1016/j.oceaneng.2018.01.020.
  5. A. Fakhrana, “Pembuatan prototype robot kapal pemungut sampah menggunakan mikrokontroler arduino uno dengan aplikasi pengendali berbasis android. Jurnal Ilmiah Teknologi Dan Rekayasa, 21(3), 185–195.gut sampah m,” J. Ilm. Teknol. dan Rekayasa, vol. 21, no. 3, pp. 185–195, 2016, [Online]. Available:
  6. K. Kasda, S. Susanto, and A. A. Bekti, “Perancangan Prototipe Kapal Remote Control Pemberi Pakan pada Budidaya Benih Ikan Mas Berkapasitas Muatan 2 Kg Menggunakan Metode Perbandingan dengan Skala 1:25,” J. Rekayasa Mesin, vol. 16, no. 1, p. 76, 2021, doi: 10.32497/jrm.v16i1.2109.
  7. F. Sulistyawan and S. Waluyanti, “Kinerja dari Prototipe Robot Visual Pengumpul Sampah Perairan dengan Remote Control menggunakan Telemetri,” Elinvo (Electronics, Informatics, Vocat. Educ., vol. 4, no. 1, pp. 69–74, 2019, doi: 10.21831/elinvo.v4i1.28343.
  8. Tamaji, Y. A. K. Utama, and H. Febrianto, “Sistem Kemudi Kapal Berbasis Wireless Menggunakan Remot Kontrol,” Teknologi, pp. 1–4, 2020.
  9. K. Dionysiou, V. Bolbot, and G. Theotokatos, "A functional model-based approach for ship systems safety and reliability analysis: Application to a cruise ship lubricating oil system," Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 236, no. 1, pp. 228–244, 2022, doi: 10.1177/14750902211004204.
  10. P. Pallis, E. Varvagiannis, K. Braimakis, T. Roumpedakis, A. D. Leontaritis, and S. Karellas, "Development, experimental testing and techno-economic assessment of a fully automated marine organic rankine cycle prototype for jacket cooling water heat recovery," energy, vol. 228,p. 120596, 2021, doi: 10.1016/
  11. T. Szelangiewicz, K. Żelazny, A. Antosik, and M. Szelangiewicz, "Application of measurement sensors and navigation devices in experimental research of the computer system for the control of an unmanned ship model," Sensors (Switzerland), vol. 21, no. 4, pp. 1–18, 2021, doi: 10.3390/s21041312.
  12. H. Laaki, Y. Miche, and K. Tammi, "Prototyping a Digital Twin for Real Time Remote Control over Mobile Networks: Application of Remote Surgery," IEEE Access, vol. 7, pp. 20235–20336, 2019, doi: 10.1109/ACCESS.2019.2897018.
  13. C. A. Thieme, C. Guo, I. B. Utne, and S. Haugen, "Preliminary hazard analysis of a small harbor passenger ferry-results, challenges and further work," J. Phys. Conf. Ser., vol. 1357, no. 1, 2019, doi: 10.1088/1742 6596/1357/1/012024.
  14. E. F. Brekke et al., “milliAmpere: An Autonomous Ferry Prototype,” J. Phys. Conf. Ser., vol. 2311, no. 1, p. 012029, 2022, doi: 10.1088/1742-6596/2311/1/012029.
  15. N. A. Costa, J. J. Jakobsen, R. Weber, M. Lundh, and S. N. MacKinnon, "Assessing a maritime service website prototype in a ship bridge simulator: navigators' experiences and perceptions of novel e-Navigation solutions," WMU J. Marit. Aff., vol. 17, no. 4, pp. 521–542, 2018, doi: 10.1007/s13437-018-0155-2.
  16. D. S. FitzGerald, "Remote control of migration: theorising territoriality, shared coercion, and deterrence," J. Ethn. Migr. Stud., vol. 46, no. 1, pp. 4–22, 2020, doi: 10.1080/1369183X.2020.1680115.
  17. D. Bothur, G. Zheng, and C. Valli, "A critical analysis of security vulnerabilities and countermeasures in a smart ship system," Proc. 15th Aust. Inf. Secur. Manag. Conf. AISM 2017, pp. 81–87, 2017.
  18. K. Blaškovic and D. Milovan, "Remote control system concept in electric and hybrid marine propulsion objects," 2019 42nd Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2019 - Proc., pp. 955–959, 2019, doi: 10.23919/MIPRO.2019.8756838.
  19. A. P. Y. Waroh, S. Sawidin, T. J. Wungkana, and H. Makapedua, “Lampu Emergency Dengan Remote Control Menggunakan Mikrokontroler,” pp. 26–27, 2020.
  20. W. Wu, S. Wang, W. Wu, K. Chen, S. Hong, and Y. Lai, "A critical review of battery thermal performance and liquid based battery thermal management," Energy Convers. Manag., vol. 182, no. September 2018, pp. 262–281, 2019, doi: 10.1016/j.enconman.2018.12.051.
  21. W. Sun, Y. Liu, and H. Gao, "Constrained sampled-data arc for a class of cascaded nonlinear systems with applications to motor-servo systems," IEEE Trans. Ind. Informatics, vol. 15, no. 2, pp. 766–776, 2019, doi: 10.1109/TII.2018.2821677.
  22. X. Wang, W. Wang, L. Li, J. Shi, and B. Xie, "Adaptive Control of DC Motor Servo System with Application to Vehicle Active Steering," IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1054–1063, 2019, doi: 10.1109/TMECH.2019.2906250.
  23. B. Schrenk, "Electroabsorption-modulated laser as optical transmitter and receiver: Status and opportunities," IET Optoelectron., vol. 14, no. 6, pp. 374–385, 2020, doi: 10.1049/iet- opt.2020.0010.
  24. D. O'Brien, S. Rajbhandari, and H. Chun, "Transmitter and receiver technologies for optical wireless," Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 378, no. 2169, 2020, doi: 10.1098/rsta.2019.0182.
  25. L. P. Perera, V. Ferrari, F. P. Santos, M. A. Hinostroza, and C. Guedes Soares, "Experimental Evaluations on Ship Autonomous Navigation and Collision Avoidance by Intelligent Guidance," IEEE J. Ocean. Eng., vol. 40, no. 2, pp. 374–387, 2015, doi: 10.1109/JOE.2014.2304793.