Main Article Content

Abstract

This research aims to analyze the performance of hydrokinetic turbines under yaw misalignment conditions using descriptive statistical methods on coefficient of power (Cp) data. Tests were conducted at water velocities of 0.7, 0.9, and 1.1 m/s for three types of turbine shrouds consisting of turbines without shrouds, turbines with two different types of shrouds, at yaw angles from 0° to 25° with 5° intervals. The study concludes that the performance of each turbine type is significantly influenced by the combination of water flow velocity and yaw angle. The diffuser type has the highest Cp value at every yaw angle, but its performance decreases with increasing yaw angle. The Blade type has poorer performance compared to the diffuser at every yaw angle and has the best performance at a combination of 1.1 m/s velocity and 5° yaw angle. Meanwhile, the shroud type has more stable performance and is not greatly affected by variations in velocity and yaw angle. Based on the analysis of changes in average Cp values with changes in yaw angle at V 0.7 m/s, all three turbine types experienced an increase in Cp value at a yaw angle of 5, with the shroud experiencing the most significant increase. At V 0.9 m/s, the diffuser and shroud types were able to maintain their average Cp values at every yaw angle, while the blade type decreased with increasing yaw angle and experienced a significant decrease at a yaw angle of 25. At V 1.1 m/s, the diffuser and blade types experienced a decrease in performance with every increase in yaw angle, but the shroud type was able to maintain the same Cp value and even experienced a significant increase at a yaw angle of 5.

Keywords

Turbine Hydrokinetic Yaw Misalignment Diffuser Shroud

Article Details

How to Cite
K, A., Leni, D., Aprilman, D., Adriansyah, A., & Chadry, R. (2023). Performance Analysis of Hydrokinetic Turbine Using Shroud Ratio Comparison under Yaw Misalignment Condition. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 23(1), 21-32. https://doi.org/https://doi.org/10.24036/invotek.v23i1.1091

References

  1. T. Antomo, I. M. Kamiana, and D. A. Nindito, “Analisis pengembangan hidrokinetik turbin gorlov akibat penambahan luas bidang tangkap,” Tek. J. Sains dan Teknol., vol. 16, no. 2, p. 159, 2020, doi: 10.36055/tjst.v16i2.9186.
  2. F. D. Putra, N. Effiandi, and D. Leni, “Pengoperasian dan Perawatan PLTMH pada Pembangkit Listrik Mikro Hidro (PLTMH) di Sungai Batang Geringging Kota Padang,” J. Tek. Mesin, vol. 10, no. 2, pp. 25–30, 2017.
  3. V. Wuwung, P. Wandani, and C. Bintoro, “Aplikasi CFD Dalam Penentuan Performa Mesin Turbofan Model CFM56-5b Yang Mengalami Cacat Pada Kipas Untuk Keputusan Maintenance,” J. Penginderaan Jauh dan Pengolah. Data Citra Digit., vol. 14, no. 1, pp. 25–36, 2016.
  4. R. A. OKTIAWAN, “EKSPERIMENTAL TURBIN AIR SUMBU HORIZONTAL MENGGUNAKAN BILAH DATAR UNTUK SISTEM PEMBANGKIT ENERGI TERBARUKAN,” Universitas Mercu Buana Jakarta, 2021.
  5. L. Jasa and I. P. Ardana, “Disain Turbin Model Nest-Lie Untuk Mikro Hidro,” Maj. Ilm. Teknol. Elektro, vol. 17, no. 02, 2018.
  6. A. Chumaidy, “Analisa Gangguan Pemutus Tenaga Mesin Cane Cutter I,” SAINSTECH J. Penelit. DAN Pengkaj. SAINS DAN Teknol., vol. 28, no. 2, 2018.
  7. A. Alzahrani, S. K. Ramu, G. Devarajan, I. Vairavasundaram, and S. Vairavasundaram, “A review on hydrogen-based hybrid microgrid system: Topologies for hydrogen energy storage, integration, and energy management with solar and wind energy,” Energies, vol. 15, no. 21, p. 7979, 2022, doi: https://doi.org/10.3390/en15217979.
  8. R. Hosanova, “Simulasi Numerik Karakteristik Pembakaran Pada Tangentially Fired Boiler Dengan Variasi Sudut Yaw,” SPECTA J. Technol., vol. 3, no. 3, pp. 44–56, 2019, doi: https://doi.org/10.35718/specta.v3i3.57.
  9. C. M. Niebuhr, M. Van Dijk, V. S. Neary, and J. N. Bhagwan, “A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential,” Renew. Sustain. Energy Rev., vol. 113, p. 109240, 2019, doi: https://doi.org/10.1016/j.rser.2019.06.047.
  10. L. A. Gish, A. Carandang, and G. Hawbaker, “Experimental evaluation of a shrouded horizontal axis hydrokinetic turbine with pre-swirl stators,” Ocean Eng., vol. 204, p. 107252, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.107252.
  11. X. Wang, Y. Yan, W.-Q. Wang, and Z.-P. Hu, “Evaluating energy loss with the entropy production theory: A case study of a micro horizontal axis river ducted turbine,” Energy Convers. Manag., vol. 276, p. 116553, 2023, doi: https://doi.org/10.1016/j.enconman.2022.116553.
  12. A. Patil, C. Pathak, and B. Alduse, “Review of Natural Hazard Risks for Wind Farms,” Energies, vol. 16, no. 3, p. 1207, 2023, doi: https://doi.org/10.3390/en16031207.
  13. Kaggle, “Yaw Misalignment Turbine,” 2020. https://www.kaggle.com/search?q=Yaw+Misalignment+turbine
  14. M. Shahsavarifard and E. L. Bibeau, “Performance characteristics of shrouded horizontal axis hydrokinetic turbines in yawed conditions,” Ocean Eng., vol. 197, p. 106916, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.106916.
  15. M. Shahsavarifard, E. L. Bibeau, and V. Chatoorgoon, “Effect of shroud on the performance of horizontal axis hydrokinetic turbines,” Ocean Eng., vol. 96, pp. 215–225, 2015, doi: https://doi.org/10.1016/j.oceaneng.2014.12.006.
  16. P. W. Galloway, L. E. Myers, and A. S. Bahaj, “Quantifying wave and yaw effects on a scale tidal stream turbine,” Renew. Energy, vol. 63, pp. 297–307, 2014, doi: https://doi.org/10.1016/j.renene.2013.09.030.
  17. K. Watanabe and Y. Ohya, “Water turbines with a brimmed diffuser by using wind lens technology,” Int. J. Energy a Clean Environ., vol. 22, no. 4, 2021, doi: 10.1615/InterJEnerCleanEnv.2020035110.
  18. R. B. Astro, Y. D. Ngapa, S. G. Toda, and A. Nggong, “Potensi energi air sebagai sumber listrik ramah lingkungan di Pulau Flores,” Opt. J. Pendidik. Fis., vol. 4, no. 2, pp. 125–133, 2020, doi: https://doi.org/10.37478/optika.v4i2.710.
  19. Rendi and J. Arifin, “Desain Diffuser Turbin Air Arus Sungai untuk Meningkatkan Laju Arus Sungai,” Al Jazari J. Ilm. Tek. Mesin, vol. 4, no. 2, 2019.
  20. S. W. Manggala, “Rancang Bangun Turbin Arus Laut Sumbu Vertikal Straight Blade Cascade untuk Mengetahui Pengaruh Variasi Jumlah Blade Terhadap Efisiensi Turbin,” ITS, 2016.
  21. H. Sun and Y. Kyozuka, “Experimental validation and numerical simulation evaluation of a shrouded tidal current turbine,” J. Japan Soc. Nav. Archit. Ocean Eng., vol. 16, pp. 25–32, 2012, doi: https://doi.org/10.2534/jjasnaoe.16.25.
  22. J. D. Betancur, J. G. A. Marin, and E. L. C. Arrieta, “Design and hydrodynamic analysis of horizontal-axis hydrokinetic turbines with three different hydrofoils by CFD,” J. Appl. Eng. Sci., vol. 18, no. 4, pp. 529–536, 2020, doi: https://doi.org/10.5937/jaes0-25273.
  23. L. A. Gish and G. Hawbaker, “Experimental and numerical study on performance of shrouded hydrokinetic turbines,” in OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1–5. doi: 10.1109/OCEANS.2016.7761041.