Main Article Content

Abstract

Currently, several material production industries have used self-sustaining power generation systems. Where the most common steam power plant system is found as an option to be used as a source of electricity. The use of biomass as an additional material for fuel in power plant has been widely carried out. This method is more commonly known as cofiring. Analysis of the cofiring combustion system of biomass in the boiler needs to be carried out in order to determine the characteristics of the combustion system that occurs. By varying the composition of the fuel, an analysis of the energy produced from the combustion reaction will be calculated. In this study, the comparison of the use of coal and wood bark was varied at conditions 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80. Assuming that the steam rate and temperature conditions to be achieved from the combustion products are constant. From the results of the analysis it was found that an increase in the amount of cofiring bark resulted in a decrease in the heating value of the combustion reaction and an increase in fuel capacity. Thus, it can be concluded that the use of bark cofiring in boilers with a coal design is less effective because it will require additional energy to increase the fuel consumption rate and reduce combustion efficiency due to not achieving optimal combustion energy because the initial design combustion chamber capacity is fixed.

Keywords

Biomass Cofiring Energy Combustion

Article Details

How to Cite
Sihombing, T., & Martin, A. (2023). Analysis of Combustion Characteristics in Boilers Using Comparison of Coal Fuel Mixtures and Bark Biomass To Determine Optimal Combustion Conditions in a Steam Power Plant. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 23(1), 43-52. https://doi.org/https://doi.org/10.24036/invotek.v23i1.1107

References

  1. O. J. Khaleel, F. B. Ismail, T. K. Ibrahim, and S. H. bin Abu Hassan, “Energy and exergy analysis of the steam power plants: A comprehensive review on the Classification, Development, Improvements, and configurations,” Ain Shams Eng. J., vol. 13, no. 3, p. 101640, 2022, doi: https://doi.org/10.1016/j.asej.2021.11.009.
  2. L. Wu et al., “Component and Process Based Exergy Evaluation of a 600MW Coal-fired Power Plant,” Energy Procedia, vol. 61, pp. 2097–2100, 2014, doi: https://doi.org/10.1016/j.egypro.2014.12.084.
  3. A. Hilmi, A. M. Ulfa, and S. Sulaimansyah, “Analisis Proksimat, Kandungan Sulfur dan Nilai Kalor dalam Penentuan Kualitas Batubara,” Indones. J. Eng., vol. 1, no. 2, pp. 85–94, 2021.
  4. D. Suntoro, P. Sinaga, R. C. Yudanto, and Faridha, “Energy Efficiency and Energy Saving Potential Analysis of Biomass Boiler at the PT Greenfields Indonesia Milk Processing Plant,” IOP Conf. Ser. Earth Environ. Sci., vol. 1034, no. 1, p. 12012, 2022, doi: 10.1088/1755-1315/1034/1/012012.
  5. A. Martin, Y. R. Ginting, I. Kurniawan, and R. A. Dhiki, “Produksi biocoal berbahan dasar tandan kosong kelapa sawit sebagai bahan bakar alternatif pada pembangkit listrik tenaga uap dengan metode torefaksi pada temperatur 200oC,” J. Tek. Mesin Indones., vol. 18, no. 1, pp. 46–51, 2023, doi: https://doi.org/10.36289/jtmi.v18i1.424.
  6. E. Syguła, J. A. Koziel, and A. Białowiec, “Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal,” Energies, vol. 12, no. 16. 2019. doi: 10.3390/en12163060.
  7. A. Martin, I. Kurniawan, and M. J. Tampubolon, “Pemanfaatan Air Gambut Untuk Meningkatkan Kualitas Produksi Biocoal dari Limbah Tandan Kosong Kelapa Sawit Dengan Variasi Waktu dan Temperatur Proses Torefaksi,” Rekayasa, vol. 14, no. 3, pp. 450–455, 2021, doi: https://doi.org/10.21107/rekayasa.v14i3.12226.
  8. Awaludin Martin, P. S. Utama, Y. R. Ginting, and N. Khotimah, “Improvement of Biocoal Quality from Empty Oil Palm Fruit Bunches by Using Peat Water to Reducing Potassium Content and Torrefaction at 300°C to Increasing Heating Value,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 90, no. 2 SE-Articles, pp. 32–41, Dec. 2021, doi: 10.37934/arfmts.90.2.3241.
  9. A. Puspawan, N. I. Supardi, and A. Suandi, “Analysis of Fuel Heating Value of Fibers and Shell Palm Oil (Elaeis Guineensis Jacq)on Fire Tube Boiler ‘Takuma Brands’ (Case Study Factory of Palm Oil in Pt. Bio Nusantara Teknologi, Central Bengkulu Regency, Bengkulu Province),” Teknosia, vol. 1, no. 16, pp. 10–17, 2016.
  10. Mulhidi, F. Wicaksana, and Azwarudin, “ANALISIS CO-FIRING REFUSED DERIVED FUEL (RDF) DI PEMBANGKIT LISTRIK TENAGA UAP (PLTU) JERANJANG CO-FIRING ANALYSIS OF REFUSED DERIVED FUEL (RDF) AT THE STEAM POWER PLANT (PLTU) JERANJANG,” J. Sanitasi dan Lingkung., vol. 3, no. 1, pp. 251–258, 2022.
  11. F. Tanbar, S. Purba, A. S. Samsudin, E. Supriyanto, and I. A. Aditya, “Analisa karakteristik pengujian co-firing biomassa sawdust pada PLTU type pulverized coal boiler sebagai upaya bauran renewable energy,” J. Offshore Oil, Prod. Facil. Renew. Energy, vol. 5, no. 2, pp. 50–56, 2021, doi: http://dx.doi.org/10.30588/jo.v5i2.928.
  12. N. Cahyo, R. B. Sitanggang, M. Triani, R. Rasgianti, E. Supriyanto, and P. Paryanto, “Simulasi Karakteristik Co-Firing Batubara - Sekam Padi pada PLTU Batubara Pulverized Coal Kapasitas 400 MWe,” ROTASI; Vol 24, No 2 Vol. 24, NOMOR 2, April 2022DO - 10.14710/rotasi.24.2.43-53, Apr. 2022, doi: https://doi.org/10.14710/rotasi.24.2.43-53.
  13. A. A. Adeleke et al., “Ash analyses of bio-coal briquettes produced using blended binder,” Sci. Rep., vol. 11, no. 1, p. 547, 2021, doi: 10.1038/s41598-020-79510-9.
  14. I. A. Aditya, F. N. Haryadi, and I. Haryani, “Analisis Pengujian Co-Firing Biomassa Cangkang Kelapa Sawit Pada PLTU Circulating Fluidized Bed (CFB) Sebagai Upaya Bauran Energi Terbarukan,” ROTASI, vol. 24, no. 2, pp. 61–66, Apr. 2022, doi: https://doi.org/10.14710/rotasi.24.2.61-66.
  15. Hariana, Prabowo, E. Hilmawan, F. Milky Kuswa, A. Darmawan, and M. Aziz, “A comprehensive evaluation of cofiring biomass with coal and slagging-fouling tendency in pulverized coal-fired boilers,” Ain Shams Eng. J., vol. 14, no. 7, p. 102001, 2023, doi: https://doi.org/10.1016/j.asej.2022.102001.
  16. I. Budiman, R. Setiawan, and Oleh, “SIMULASI CFD ANALISA PENAMBAHAN TEMPERATUR PADA PEMBAKARAN OXY-FUEL BOILER DENGAN BAHAN BAKAR GAS ALAM,” INFOMATEK J. Inform. Manaj. dan Teknol., vol. 23, no. 1, pp. 21–26, 2021, doi: https://doi.org/10.23969/infomatek.v23i1.3415.
  17. N. H. Saad, A. A. El-Sattar, and A. E.-A. M. Mansour, “A novel control strategy for grid connected hybrid renewable energy systems using improved particle swarm optimization,” Ain Shams Eng. J., vol. 9, no. 4, pp. 2195–2214, 2018, doi: https://doi.org/10.1016/j.asej.2017.03.009.
  18. K. Kawiarso, N. Nuryoto, and A. Irawan, “Pengaruh Biomassa Terhadap Efisiensi Boiler Pada Pembangkit CFB Batubara Dalam Sistem Co-firing,” J. Ilm. Wahana Pendidik., vol. 9, no. 3, pp. 281–296, 2023, doi: https://doi.org/10.5281/zenodo.7625148.
  19. B. Pakpahan et al., “ANALISIS PEMBAKARAN PADA BOILER KAPASITAS 260 TON/JAM DENGAN MENGGUNAKAN BAHAN BAKAR GAS,” SINERGI POLMED J. Ilm. Tek. Mesin, vol. 2, no. 2, pp. 11–17, 2021, doi: https://doi.org/10.51510/sinergipolmed.v2i2.26.
  20. A. Kusairi Samlawi, Teknik Pembakaran. Banjarbaru: Universitas Lambung Mangkurat, 2017.
  21. L. S. Paraschiv, A. Serban, and S. Paraschiv, “Calculation of combustion air required for burning solid fuels (coal / biomass / solid waste) and analysis of flue gas composition,” Energy Reports, vol. 6, pp. 36–45, 2020, doi: https://doi.org/10.1016/j.egyr.2019.10.016.
  22. T. Ginanjar, G. Suryani Lubis, Y. M. Simanjuntak, and J. Teknik Mesin, “Analisa Kebutuhan Bahan Bakar Boiler Dengan Melakukan Uji Kalori Pada Pabrik Kelapa Sawit PT,” Sentosa Prima Agro, 2018.
  23. A. Sugiharto, “Perhitungan Efisiensi Boiler Dengan Metode Secara Langsung pada Boiler Pipa Api,” Swara Patra Maj. Ilm. PPSDM Migas, vol. 10, no. 2, pp. 51–57, 2020, doi: https://doi.org/10.37525/sp/2020-2/260.
  24. “Laboratorium PT. Indah Kiat Pulp dan Kertas,” Perarwang-Riau Indonesia.
  25. “Skematik Power Plant PT. Indah Kiat Pulp dan Kertas,” Perawang-Riau.Indonesia.