Main Article Content
Abstract
The existence of substation operators is essential for monitoring substation equipment and operating control rooms. In addition, substation operators also have other tasks, such as inspecting substation equipment in the switchyard or in-service inspection (Level 1 inspection). This condition is less than ideal because the operator cannot monitor the control room continuously while in the switchyard. The control panel at the substation is equipped with an alarm annunciator, which is auxiliary equipment that serves to provide warning signs to the operator regarding which protection functions are working. Therefore, it is necessary to have a monitoring system that can provide real-time information about the condition of the control panel alarm annunciator. This research models a fault alarm monitoring system that can provide notification messages according to the type of fault automatically through the Telegram application. The system test results show the average value of 100 test data on the five types of fault, resulting in an accuracy rate of 100%, a precision rate of 100%, a recall rate of 100%, an error rate of 0%, and an F1-score rate of 100%. This is because all test data on the five types of fault were detected correctly, and no test data from other types of fault was detected as the five types of fault. Based on these averages, it can be concluded that using a confusion matrix to measure the performance of the fault alarm monitoring system on the IoT-based control panel annunciator alarm shows excellent system performance results.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Ramadhan Dwi Saputra, Subuh Isnur Haryudo, Raden Roro Hapsari Peni Agustin Tjahyaningtijas, Unit Three Kartini (2024)References
- D. Sawitri, “Internet Of Things Memasuki Era Society5.0,” KITEKTRO J. Komputer, Inf. Teknol. dan Elektro, vol. 8, no. 1, pp. 31–35, 2023, doi: https://doi.org/10.24815/kitektro.v8i1.28578.
- A. R. Hermanto, M. J. Afroni, and Sugiono, “Sistem Monitoring Tegangan DC 110 Volt Berbasis IoT pada Gardu Induk Kebonagung,” Sci. ELECTRO, vol. 16, no. 2, pp. 2–6, 2023.
- J. Gaspar, T. Cruz, C.-T. Lam, and P. Simões, “Smart Substation Communications and Cybersecurity : A Comprehensive Survey,” EEE Commun. Surv. Tutorials, vol. 25, no. 4, pp. 2456–2493, 2023, doi: 10.1109/COMST.2023.3305468.
- Kartiria, Erhaneli, S. Amalia, and C. Yuanisa, “Rancang Bangun Sistem Monitoring Arus 3-Phasa Menggunakan Sensor SCT-013 berbasis Mikrokontroler Arduino,” J. Tek. Elektro Inst. Teknol. Padang, vol. 10, no. 2, pp. 71–76, 2021, doi: 10.21063/JTE.2021.31331013.
- M. S. Pandang, Nachrowie, and R. D. J. K. Sari, “Prototype Kendali Arus dan Tegangan Menggunakan Internet of Things (IoT),” Blend Sains J. Tek., vol. 2, no. 2, pp. 191–197, 2023, doi: 10.56211/blendsains.v2i2.351.
- W. Xiaozhong et al., “Research on Implementation Scheme of Local Bay Control Unit (BCU) Installation,” 2018 China Int. Conf. Electr. Distrib., no. 201805280000184, pp. 1735–1738, 2018, doi: 10.1109/CICED.2018.8592102.
- SKDir 0520, Buku Pedoman Pemeliharaan Proteksi dan Kontrol Penghantar, PDM/SGI/15. PT PLN (Persero), 2014.
- PT PLN (Persero) PUSDIKLAT, Peralatan Gardu Induk. 2009.
- C. F. Saputri, K. E. Susilo, and M. N. Arifin, “Monitoring Suhu Non-Contact Sambungan Kabel Dengan Trafo Berkapasitas 20 kV Pada Gardu Induk Ngagel Berbasis IoT,” SENADA Semin. Nas. Sains Data, vol. 01, no. 01, pp. 66–74, 2021.
- B. Adi and A. Hariyanto, “Monitoring Online Arus Bocor Kabel Power Trafo Tenaga Berbasis Mikrokontroller Wemos-D1 Dengan Database Via Thingspeak Untuk Mengoptimalkan Inspeksi Level-2 Di Gardu Induk PLN,” J. Tek. Elektro Univ. Muhammadiyah Tangerang, vol. 5, no. 2, pp. 49–58, 2021, doi: http://dx.doi.org/10.3000/jte.v5i2.6996.
- A. M. Baharudin, K. Suhada, and Yudiana, “Rancang Bangun Sistem Monitoring Suhu Trafo Online Menggunakan Aplikasi Whatsapp Berbasis Iot Studi Kasus Pada Gardu Induk PLN 150KV Mekarsari,” J. Interkom J. Publ. Ilm. Bid. Teknol. Inf. dan Komun., vol. 17, no. 3, pp. 135–145, 2022, doi: 10.35969/interkom.v17i3.263.
- R. S. Ganda and N. Paramytha, “Notifikasi Gangguan Penyulang Pada Distribusi Primer,” J. Ilm. Univ. Batanghari Jambi, vol. 23, no. 1, p. 1062, 2023, doi: 10.33087/jiubj.v23i1.2800.
- Sugiyono, Metode Penelitian Kuantitatif Kualitatif Dan R&D. Bandung: Alfabeta, 2013.
- A. H. Pohan and B. U. Prawirawan, “Rancang Bangun Pemotong Kabel Otomatis Sesuai Panjang Yang Diprogram Berbasis Arduino Uno,” J. Tek., vol. 12, no. 01, pp. 100–113, 2023, doi: http://dx.doi.org/10.31000/jt.v12i1.7983.
- J. Muhammad, Fitriono, Y. Afrida, and Liyansyah, “Analisa Data Hasil Pengukuran Beban Motor Listrik 1 Fasa pada kWh Analog dan kWh Digital,” Electr. – J. Rekayasa dan Teknol. Elektro Anal., vol. 15, no. 2, pp. 181–191, 2021, doi: https://doi.org/10.23960/elc.v15n3.2219.
- PT PLN (Persero), Petunjuk Pengoperasian Gardu Induk Surabaya Barat, NO.UPT.MJK. PT PLN (Persero) UBS-P3B REGION JAWA TIMUR DAN BALI, 2002.
- D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform., vol. 5, no. 2, pp. 697–711, 2021, doi: http://dx.doi.org/10.30645/j-sakti.v5i2.369.
- M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,” IEEE Access, vol. 8, pp. 90847–90861, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2994222.
- B. P. Pratiwi, A. S. Handayani, and Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi WSN Menggunakan Confusion Matrix,” J. Inform. UPGRIS, vol. 6, no. 2, pp. 66–75, 2020, doi: https://doi.org/10.26877/jiu.v6i2.6552.
- D. Arifianto and M. A. Rohman, “Penerapan Metode Euclidean Probality dan Confusion Matrix dalam Diagnosa Penyakit Koi,” J. Smart Teknol., vol. 2, no. 2, pp. 122–130, 2021.