Main Article Content

Abstract

Hybrid power generation, a power plant that combines two or more plants, continues to grow along with technological advances. The performance of these power plants relies heavily on effective switching and monitoring systems. Monitoring data is critical in maintenance scheduling, preventive intervention, and the timely identification and assessment of environmental changes. One of the switching and monitoring technologies integrated with the Internet is the Internet of Things (IoT) technology. This study introduces a system design capable of wirelessly performing switching operations and transmitting real-time data to a hybrid power plant monitoring system through an application. Test results demonstrate that the system successfully executes automatic switching between the hybrid power plant and the PLN electricity grid based on accumulator voltage thresholds. The monitoring data analysis reveals MAPE values of 2.959% and 3.577% for the voltage and current of the hybrid power plant, and a MAPE of 1% for the accumulator voltage. The voltage and load current readings also exhibit MAPEs of 0.604% and 8.625%. Based on the test results, it can be concluded that this device shows the ability of the system to automate the switching of resources to the load and monitor the hybrid power plant very well, with the smallest MAPE value achieved of 0.604%.

Keywords

Switching System Monitoring System Hybrid Power Plant Internet of Things

Article Details

How to Cite
Aguska, A., Haryudo, S., Kartini, U., & Rohman, M. (2024). Design of an IoT-Based Automatic Switching and Monitoring System for Hybrid Power Plants. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 24(1), 43-52. https://doi.org/https://doi.org/10.24036/invotek.v24i1.1179

References

  1. C. D. P. Hertadi, M. Sulaiman, and P. G. P. Anwar, ‘Kajian Industri Energi Terbarukan Tenaga Listrik di Indonesia Berdasarkan Arah Kebijakan dan Potensi Alam’, G-Tech J. Teknol. Terap., vol. 6, no. 2, pp. 276–283, 2022, doi: 10.33379/gtech.v6i2.1690.
  2. H. Mamur, Ö. F. Dilmaç, J. Begum, and M. R. A. Bhuiyan, ‘Thermoelectric generators act as renewable energy sources’, Clean. Mater., vol. 2, no. November, p. 100030, 2021, doi: 10.1016/j.clema.2021.100030.
  3. P. Setianingsih and M. B. Husodo, ‘Investasi Dan Analisis Kelayakan Ekonomi Pertambangan Terbuka Batubara Pt Gerbang Daya Mandiri Di Kalimantan Timur’, Sebatik, vol. 26, no. 2, pp. 573–581, 2022, doi: 10.46984/sebatik.v26i2.2004.
  4. T. A. Wahyu Sabubu, ‘Pengaturan Pembangkit Listrik Tenaga Uap Batubara Di Indonesia Prespektif Hak Atas Lingkungan Yang Baik Dan Sehat’, J. Lex Renaiss., vol. 5, no. 1, pp. 72–90, 2020, doi: 10.20885/jlr.vol5.iss1.art5.
  5. S. Muslim, K. Khotimah, and A. Azhiimah, ‘Analisis Kritis Terhadap Perencanaan Pembangkit Listrik Tenaga Surya (Plts) Tipe Photovoltaic (Pv) Sebagai Energi Alternatif Masa Depan’, Rang Tek. J., vol. 3, no. 1, pp. 119–130, 2020, doi: https://doi.org/10.31869/rtj.v3i1.1638.
  6. N. H. Jaenuri1, W. A. Nurtiyanto, and R. Subur, ‘Analisis Efektifitas Penggunaan ATS dalam Meningkatkan Keandalan Pasokan Listrik dari PLTS Off-Grid’, Kohesi J. Multidisiplin Saintek, vol. 3, no. 5, pp. 100–111, 2024, doi: https://doi.org/10.3785/kohesi.v3i5.3395.
  7. A. Asnil, K. Krismadinata, I. Husnaini, H. Hazman, and E. Astrid, ‘Real-Time Monitoring System Using IoT for Photovoltaic Parameters’, TEM J., vol. 12, no. 3, pp. 1316–1322, 2023, doi: 10.18421/TEM123-11.
  8. F. Njoka, L. Thimo, and A. Agarwal, ‘Evaluation of IoT-based remote monitoring systems for stand-alone solar PV installations in Kenya’, J. Reliab. Intell. Environ., vol. 9, no. 3, pp. 319–331, 2023, doi: 10.1007/s40860-022-00190-5.
  9. A. Triki-Lahiani, A. Bennani-Ben Abdelghani, and I. Slama-Belkhodja, ‘Fault detection and monitoring systems for photovoltaic installations: A review’, Renew. Sustain. Energy Rev., vol. 82, no. March, pp. 2680–2692, 2018, doi: 10.1016/j.rser.2017.09.101.
  10. M. Gopal, T. Chandra Prakash, N. Venkata Ramakrishna, and B. P. Yadav, ‘IoT Based Solar Power Monitoring System’, IOP Conf. Ser. Mater. Sci. Eng., vol. 981, no. 3, pp. 1–8, 2020, doi: 10.1088/1757-899X/981/3/032037.
  11. S. Sarswat, I. Yadav, and S. K. Maurya, ‘Real Time Monitoring of Solar PV Parameter Using IoT’, Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 1S, pp. 267–271, 2019, doi: 10.35940/ijitee.a1054.1191s19.
  12. T. Sutikno, H. S. Purnama, A. Pamungkas, A. Fadlil, I. M. Alsofyani, and M. H. Jopri, ‘Internet of things-based photovoltaics parameter monitoring system using NodeMCU ESP8266’, Int. J. Electr. Comput. Eng., vol. 11, no. 6, pp. 5578–5587, 2021, doi: 10.11591/ijece.v11i6.pp5578-5587.
  13. A. Readyansyah, S. Haryudo, A. Achmad, and N. Kholis, ‘Perancangan Pembangkit Listrik Hybrid (Solar Cell – Thermoelectric Generator (TEG)) Berbasis Internet of Things (IoT)’, J. Tek. Elektro, vol. 11, no. 03, pp. 454–464, 2022, doi: https://doi.org/10.26740/jte.v11n3.p454-462.
  14. I. F. Pamungkas, U. T. Kartini, T. Wrahatnolo, and Joko, ‘Sistem Monitoring Daya Listrik Photovoltaic Berbasis Internet of Things ( IoT )’, J. Tek. Elektro, vol. 11, no. 2, pp. 236–245, 2022, doi: https://doi.org/10.26740/jte.v11n2.p236-245.
  15. I. Inayah, N. Hayati, A. Nurcholis, A. Dimyati, and M. G. Prasetia, ‘Realtime Monitoring System of Solar Panel Performance Based on Internet of Things Using Blynk Application’, Elinvo (Electronics, Informatics, Vocat. Educ., vol. 7, no. 2, pp. 135–143, 2023, doi: 10.21831/elinvo.v7i2.53365.
  16. M. Rajvikram and G. Sivasankar, ‘Experimental study conducted for the identification of best heat absorption and dissipation methodology in solar photovoltaic panel’, Sol. Energy, vol. 193, no. March, pp. 283–292, 2019, doi: 10.1016/j.solener.2019.09.053.
  17. A. Antony, Y. D. Wang, and A. P. Roskilly, ‘A detailed optimisation of solar photovoltaic/thermal systems and its application.’, Energy Procedia, vol. 158, no. 2018, pp. 1141–1148, 2019, doi: 10.1016/j.egypro.2019.01.295.
  18. T. Ratnasari and A. Senen, ‘Perancangan prototipe alat ukur arus listrik Ac dan Dc berbasis mikrokontroler arduino dengan sensor arus Acs-712 30 ampere’, J. Sutet, vol. 7, no. 2, pp. 28–33, 2017, doi: https://doi.org/10.33322/sutet.v8i1.713.
  19. P. L. dos Santos, T. P. A. Perdicoúlis, P. A. Salgado, and J. C. Azevedo, ‘Kalman filter for noise reduction of Li-Ion cell discharge current’, IFAC-PapersOnLine, vol. 56, no. 2, pp. 9582–9587, 2023, doi: 10.1016/j.ifacol.2023.10.261.
  20. D. Li, Y. Wang, J. Wang, C. Wang, and Y. Duan, ‘Recent advances in sensor fault diagnosis: A review’, Sensors Actuators, A Phys., vol. 309, p. 111990, 2020, doi: 10.1016/j.sna.2020.111990.