Main Article Content

Abstract

Indonesia is reducing reliance on fossil fuels by expanding renewable energy, including biomass from rubber-plantation residues and acacia wood. This study evaluates briquettes made from rubber seed shell (RSS) and acacia sawdust (AWS) using 10% tapioca binder, a compaction pressure of 50 kgf cm⁻², and drying at 100 °C for 3 h. Three compositions (RSS:AWS, %wt) were tested: A (50:50), B (70:30), and C (80:20). The best performance was obtained for C (80:20), with moisture 7.40%, volatile matter 9.56%, ash 4.47%, fixed carbon 85.95%, HHV 6,716.88 cal g⁻¹ (28.10 MJ kg⁻¹), and burn rate 0.10 g min⁻¹. All compositions satisfied SNI 01-6235-2000 limits for HHV (≥ 5,000 cal g⁻¹), VM (≤ 15%), and ash (≤ 8%); the moisture criterion (≤ 8%) was met by B and C. For context, SNI 1683:2021 (wood charcoal, not briquettes) imposes stricter thresholds; under these, C is closest to First-Quality ranges, while A and B fall short for several parameters. Overall, increasing the RSS (char) fraction produced briquettes with lower moisture and VM, higher fixed carbon and HHV, and steadier combustion suitable for household fuel.

Keywords

Renewable Energy Biomass Briquettes Rubber Seed Shell Acacia Sawdust SNI

Article Details

How to Cite
Alfian, D., Sindhu, I. G., Paundra, F., Silitonga, D., & Nugraha, A. (2025). Analysis of Biomass Briquettes Made from Rubber Seed Shells and Acacia Sawdust with Variation in Material Composition Percentage. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 25(2), 97-108. https://doi.org/https://doi.org/10.24036/invotek.v25i2.1209

References

  1. M. Azhar and D. Adam Satriawan, “Implementasi Kebijakan Energi Baru dan Energi Terbarukan Dalam Rangka Ketahanan Energi Nasional,” 2018.
  2. A. Narzary, J. Brahma, and A. K. Das, “Utilization of waste rice straw for charcoal briquette production using three different binder,” Cleaner Energy Systems, vol. 5, Aug. 2023, doi: 10.1016/j.cles.2023.100072.
  3. J. Wang and W. Azam, “Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries,” Geoscience Frontiers, vol. 15, no. 2, Mar. 2024, doi: 10.1016/j.gsf.2023.101757.
  4. P. Shrivastava, A. Kumar, P. Tekasakul, S. S. Lam, and A. Palamanit, “Comparative investigation of yield and quality of bio-oil and biochar from pyrolysis of woody and non-woody biomasses,” Energies (Basel), vol. 14, no. 4, 2021, doi: 10.3390/en14041092.
  5. M. Ashraf, N. Ramzan, R. U. Khan, and A. K. Durrani, “Analysis of mixed cattle manure: Kinetics and thermodynamic comparison of pyrolysis and combustion processes,” Case Studies in Thermal Engineering, vol. 26, Aug. 2021, doi: 10.1016/j.csite.2021.101078.
  6. A. Amrullah, H. Irawansyah, I. N. Ardiyat, G. R. Cahyono, and P. R. Ansyah, “Effect of carbonization temperature on the properties of Rubber Seed-Shell briquettes,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2023. doi: 10.1088/1755-1315/1187/1/012022.
  7. H. dan P. Direktorat Statistik Tanaman Pangan, “Indonesia Rubber Statistics 2023,” Jakarta, Nov. 2024.
  8. L. Karlinasari, H. Baihaqi, A. Maddu, and T. R. Mardikanto, “The Acoustical Properties of Indonesian Hardwood Species,” MAKARA of Science Series, vol. 16, no. 2, Nov. 2012, doi: 10.7454/mss.v16i2.1405.
  9. S. Arita, F. Hadiah, R. Amalia, E. Rosmalisa, and W. Andalia, “Production of Glucose from Waste Bark Acacia Mangium Using Delifnification and Chemical Hydrolysis Process,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2019. doi: 10.1088/1742-6596/1167/1/012052.
  10. D. Alfian, K. Saputra, A. Muhyi, and D. Silitonga, “Analysis of Biomass Briquettes Made from Bagasse Using Tapioca Starch Adhesive with Drying Temperature Variations,” Jurnal Rekayasa Mesin, vol. 19, no. 1, pp. 65–76, 2024, [Online]. Available: https://jurnal.polines.ac.id/index.php/rekayasa
  11. H. Tambunan, A. Nuryawan, A. H. Iswanto, I. Risnasari, M. Basyuni, and W. Fatriasari, “Briquettes Made of Branches Wood of Three Mangrove Species Bonded by Starch Adhesive,” Materials, vol. 16, no. 15, Aug. 2023, doi: 10.3390/ma16155266.
  12. B. D. Afrah, J. F. D. Saputri, T. M. R. Putri, L. N. Komariah, and M. I. Riady, “Improvement of Brown Coal Quality through Variation of Acacia Wood Waste Biochar Composition in Producing Alternative Solid Fuel,” Journal of Ecological Engineering, vol. 25, no. 11, pp. 188–199, Nov. 2024, doi: 10.12911/22998993/192672.
  13. I. K. Ahmadien, D. G. C. Alfian, and D. J. Silitonga, “The Effect of Variations in The Composition of Coffee Grounds and Cocopeat Powder on The Characteristics of Briquettes With Tapioca Flour as A Binder,” Jurnal Tekno Insentif, vol. 18, no. 2, pp. 130–142, Dec. 2024.
  14. D. G. C. Alfian, M. J. Tambunan, F. Paundra, D. J. Silitonga, L. A. Putri, and M. Syaukani, “The Effect of Pressure Variations on the Characteristics of Coconut Shell Based Briquettes Using Tapioca Starch Adhesive,” ROTASI, vol. 25, no. 3, pp. 23–32, 2023.
  15. M. Jewiarz, M. Wróbel, K. Mudryk, and S. Szufa, “Impact of the drying temperature and grinding technique on biomass grindability,” Energies (Basel), vol. 13, no. 13, Jul. 2020, doi: 10.3390/en13133392.
  16. F. INEGBEDİON, “Estimation of the moisture content, volatile matter, ash content, fixed carbon and calorific values of saw dust briquettes,” MANAS Journal of Engineering, vol. 10, no. 1, pp. 17–20, Jun. 2022, doi: 10.51354/mjen.940760.
  17. G C. Wakchaure and R K. Sharma, “Physical Quality of Some Biomass Briquettes,” Journal of Agricultural Engineering (India), vol. 44, no. 1, pp. 48–52, Mar. 2007, doi: 10.52151/jae2007441.1239.
  18. A. V. Kuznetsov, E. B. Butakov, and S. S. Abdurakipov, “Ignition and thermal decomposition of solid organic fuel: The influence of activation, deactivation, and composite formation,” Case Studies in Thermal Engineering, vol. 53, Jan. 2024, doi: 10.1016/j.csite.2023.103950.
  19. U. B. Deshannavar, P. G. Hegde, Z. Dhalayat, V. Patil, and S. Gavas, “Production and characterization of agro-based briquettes and estimation of calorific value by regression analysis: An energy application,” Mater Sci Energy Technol, vol. 1, no. 2, pp. 175–181, Dec. 2018, doi: 10.1016/j.mset.2018.07.003.
  20. Y. Niu et al., “Biomass torrefaction: properties, applications, challenges, and economy,” Nov. 01, 2019, Elsevier Ltd. doi: 10.1016/j.rser.2019.109395.
  21. G. I. Ngene, B. Bouesso, M. González Martínez, and A. Nzihou, “A review on biochar briquetting: Common practices and recommendations to enhance mechanical properties and environmental performances,” Sep. 01, 2024, Elsevier Ltd. doi: 10.1016/j.jclepro.2024.143193.
  22. Standar Nasional Indonesia (SNI), Briket Arang Kayu SNI 01-6235-2000. Indonesia: BSN, 2000, pp. 1–8.
  23. Badan Standardisasi Nasional (BSN), SNI 1683:2021 Arang Kayu. Indonesia, 2021.
  24. S. Ahmad, K. Winarso, R. Yusron, and S. Amar, “Optimization of Calorific Value in Briquette made of Coconut Shell and Cassava Peel by varying of Mass Fraction and Drying Temperature,” E3S Web of Conferences, vol. 499, p. 01009, 2024, doi: 10.1051/e3sconf/202449901009.
  25. K. Roman and E. Grzegorzewska, “Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization,” Dec. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en17246392.
  26. P. Kipngetich, R. Kiplimo, J. K. Tanui, and P. Chisale, “Effects of carbonization on the combustion of rice husks briquettes in a fixed bed,” Clean Eng Technol, vol. 13, Apr. 2023, doi: 10.1016/j.clet.2023.100608.
  27. X. Yang, K. Kang, L. Qiu, L. Zhao, and R. Sun, “Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches,” Renew Energy, vol. 146, pp. 1691–1699, Feb. 2020, doi: 10.1016/j.renene.2019.07.148.
  28. M. Syahrul, A. Anggara, and H. Amrit, “Analisis Karakteristik Briket dari Cangkang Kemiri dan Tongkol Jagung sebagai Bahan Bakar Alternatif,” vol. 14, no. 2, pp. 50–58, 2023.