Main Article Content

Abstract

The development and development of new renewable energy has become increasingly widespread recently, one of the most widely used is solar panels. The biggest disadvantage of installing solar panels is that they are not able to follow the movement of the sun so that the power output produced is less than optimal. A solar tracker is a device used to optimize the absorption of sunlight by solar panels by following the movement of the sun. However, the use of sensors on solar trackers often requires quite complicated manufacturing. Therefore, this research aims to design a solar tracker without sensors in photovoltaic (PV) systems. The method in this research is to compare the power produced by solar panels with and without solar trackers based on IoT (Internet of Things) case studies at the UNIPMA Integrated Lab. Data collection was carried out in real time over a period of 3 days starting at 09.00 WIB with a solar panel tilt of 45° until 15.00 WIB with a solar panel tilt of 135°. The results of measurements using a solar tracker on photovoltaic (PV) showed an average current of 0.74 amperes (A), an average voltage of 18.7 volts (V), and an average power output of 14.4 watts. (W). Meanwhile, measurement results without a solar tracker showed an average current of 0.6 amperes (A), an average voltage of 17.9 volts and an average power output of 11.04 watts (W). So, the power produced with a solar tracker is more optimal than without a solar tracker.

Keywords

Solar Energy Photovoltaic (PV) Solar Tracker

Article Details

How to Cite
Yuniahastuti, I., Sunaryantiningsih, I., Firmansyah, A., & Akbar, D. (2025). Optimizing Solar Panel Output with an IoT-Based Solar Tracker: UNIPMA Integrated Lab Case Study. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 24(2), 127-138. https://doi.org/https://doi.org/10.24036/invotek.v24i2.1222

References

  1. D. Pratama and A. Asnil, “Sistem Monitoring Panel Surya Secara Realtime Berbasis Arduino Uno,” MSI Trans. Educ., vol. 2, no. 1, pp. 19–32, 2021, doi: https://doi.org/10.46574/mted.v2i1.46.
  2. I. M. Muhammad, C. Sari, and T. Yuniahastuti, “ANALISIS POTENSI PANEL SURYA 50 WP di LAB TERPADU UNIVERSITAS PGRI MADIUN,” J. Sist. Cerdas dan Rekayasa (JSCR), E-ISSN 2656-7504, vol. 5, no. 2, pp. J4-1, 2023, doi: https://doi.org/10.61293/jscr.v5i2.533.
  3. M. Mungkin, H. Satria, J. Yanti, and G. A. B. Turnip, “PERANCANGAN SISTEM PEMANTAUAN PANEL SURYA POLYCRYSTALLINE MENGGUNAKAN TEKNOLOGI WEB FIREBASE BERBASIS IoT,” J. Inf. Technol. Comput. Sci, vol. 3, no. 2, pp. 319–327, 2020.
  4. D. F. Akbar, I. T. Yuniahastuti, and C. Sari, “Perancangan Sistem Monitoring Panel Surya Dengan Berbasis IoT Menggunakan Blynk,” ELECTRA Electr. Eng. Artic., vol. 5, no. 1, pp. 57–64, 2024, doi: https://doi.org/10.25273/electra.v5i1.21271.
  5. T. Sutikno, J. Alfahri, and H. S. Purnama, “Monitoring Tegangan dan Arus Pada Panel Surya Menggunakan IoT,” Maj. Ilm. Teknol. Elektro, vol. 22, no. 1, pp. 153–158, 2023, doi: https://doi.org/10.24843/ MITE.2023.v22i01.P20.
  6. R. Fernandes and M. Yuhendri, “Implementasi Solar Tracker Tanpa Sensor pada Panel Surya,” JTEV (Jurnal Tek. Elektro dan Vokasional), vol. 6, no. 2, pp. 337–343, 2020, doi: 10.24036/jtev.v6i2.109403.
  7. F. P. Syahrani, H. K. Saputra, S. Anori, W. Agustiarmi, F. T. Ayasrah, and P. Van Thanh, “IoT-Enabled Smart Fence: Remote Security and Monitoring Using NodeMCU ESP32 and Blynk,” J. Hypermedia Technol. Learn., vol. 3, no. 1, pp. 1–15, 2025, doi: 10.58536/j-hytel.158.
  8. S. Deepthi, A. Ponni, R. Ranjitha, and R. Dhanabal, “Comparison of efficiencies of single-axis tracking system and dual-axis tracking system with fixed mount,” Int. J. Eng. Sci. Innov. Technol., vol. 2, no. 2, pp. 425–430, 2013.
  9. Y. H. Anoi, A. Yani, and W. Yunanri, “Analisis sudut panel solar cell terhadap daya output dan efisiensi yang dihasilkan,” TURBO, vol. 8, no. 2, pp. 177–182, 2019, doi: 10.24127/trb.v8i2.1051.
  10. T. Majaw, R. Deka, S. Roy, and B. Goswami, “Solar charge controllers using MPPT and PWM: A review,” ADBU J. Electr. Electron. Eng., vol. 2, no. 1, pp. 1–4, 2018, [Online]. Available: https://media.neliti.com/media/publications/287658-solar-charge-controllers-using-mppt-and-66d6c4aa.pdf
  11. A. Pratama, I. T. Yuniahastuti, and D. Susilo, “Pembersih Panel Surya 50W Menggunakan Wiper di Laboratorium Terpadu UNIPMA,” JASIEK (Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 5, no. 2, pp. 147–156, 2023, doi: https://doi.org/10.26905/jasiek.v5i2.10906.
  12. D. E. Myori, R. Mukhaiyar, and E. Fitri, “Sistem Tracking Cahaya Matahari pada Photovoltaic,” INVOTEK J. Inov. Vokasional dan Teknol., vol. 19, no. 1, pp. 9–16, 2019, doi: 10.24036/invotek.v19i1.548.
  13. A. Azis, M. R. Tahfiz, and N. Nurdiana, “Perancangan Sistem Penggerak Panel Surya pada Pembangkit Listrik Tenaga Surya Mobile Berbasis Arduino,” Electr. J. Rekayasa dan Teknol. Elektro, vol. 17, no. 2, pp. 161–168, 2023, doi: https://doi.org/10.23960/elc.v17n2.2418.