Main Article Content

Abstract

Currently, many charcoal makers use drums as pyrolyzers, this is because the oxygen (O2) entering the combustion chamber is controlled, the oxygen level entering the combustion chamber must be low so that the shell does not burn out. The aim of this research is to calculate the heat loss rate of the pyrolyzer for making coconut shell charcoal and to analyze the effect of a mixture of clay, sand and rice straw insulator on the charcoal yield and quality of the charcoal produced. This research focuses on reviewing pyrolyzer modifications based on aspects of mixed variations of clay, sand and rice straw insulating materials in dealing with heat loss. Testing of furnace performance is carried out using comparisons of several parameters or components including temperature, time and insulator material. The final stage of the research is to draw conclusions and draw conclusions based on the results of material variations and the factors that influence them. The research results show that the best insulator is the TP3 pyrolyzer with an insulator mixed with clay, sand and rice straw in a ratio of 2:1:0.3 with a heat loss of 7,378.992 W and ΔT of 195°C. The addition of rice straw to a mixture of clay and sand insulators provides significant benefits in increasing ΔT and reducing heat loss. The addition of rice straw to a mixture of clay and sand insulators has a significant impact on the carbonization process of coconut shell charcoal. Even though the charcoal yield decreases with the addition of rice straw to the insulator, the quality of the charcoal produced increases, especially in terms of fixed carbon content with the best insulator being the TP3 pyrolyzer with a carbon content value of 78.54%.

Keywords

Alternative Energy Modification Charcoal Proximate Insulation

Article Details

How to Cite
Adi, T., Youfa, R., Rahmad, D., & Akli, K. (2025). Pyrolyzer Modification for Making Coconut Shell Charcoal with Isolation from a Mixture of Clay, Sand, and Rice Straw. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 24(3), 169-178. https://doi.org/https://doi.org/10.24036/invotek.v24i3.1236

References

  1. Sudarlin, Eksplorasi Energi Pengembangan Energi Terbarukan, 1 st editi. Omah Ilmu, 2016.
  2. S. Sudding and J. Jamaluddin, “The Processing Of Coconut Shell Based On Pyrolysis Technology To Produce Reneweable Energy Sources,” in International Conference on Mathematics, Science, Technology, Education, and their Applications, 2016, pp. 498–510.
  3. A. Irawan, L. U. S, and M. D. I. P, “Effect of torrefaction process on the coconut shell energy content for solid fuel,” in AIP Conference Proceedings, 2017, vol. 1826, no. 1, p. 20010. doi: https://doi.org/10.1063/1.4979226.
  4. F. Lulrahman and A. Irawan, “Studi Pengolahan Limbah Tempurung Kelapa Dengan Metode Pirolisis Untuk Menghasilkan Asap Cair,” J. Aerasi, vol. 1, no. 1, pp. 21–27, 2019, doi: 10.36275/jaerasi.v1i1.139.
  5. E. Evahelda, R. P. Astuti, and S. N. Aini, “Pemanfaatan limbah tempurung kelapa untuk pembuatan asap cair menggunakan metode pirolisis,” AGROMIX, vol. 14, no. 2, pp. 175–181, 2023, doi: https://doi.org/10.35891/agx.v14i2.3123.
  6. R. N. Sari, B. S. B. Utomo, and B. B. Sedayu, “Uji coba alat penghasil asap cair skala laboratorium dengan bahan pengasap serbuk gergaji kayu jati sabrang atau sungkai (Peronema canescens),” J. Pascapanen dan Bioteknol. Kelaut. dan Perikan., vol. 2, no. 1, pp. 27–34, 2007, doi: https://doi.org/10.15578/jpbkp.v2i1.31.
  7. P. Prengki, “PENGARUH VARIASI TEMPERATUR TABUNG REAKTOR PADA TOREFAKSI TONGKOL JAGUNG MENGGUNAKAN REAKTOR TOREFAKSI TIPE TUBULAR SISTEM OIL JACKET,” Fakultas Teknik, 2024.
  8. H. Habibati, “Kajian Potensi Produk Pirolisis Limbah Padat Kelapa Sawit,” Biol. Edukasi J. Ilm. Pendidik. Biol., vol. 2, no. 1, pp. 24–31, 2010.
  9. K. Ridhuan, D. Irawan, and R. Inthifawzi, “Proses pembakaran pirolisis dengan jenis biomassa dan karakteristik asap cair yang dihasilkan,” Turbo J. Progr. Stud. Tek. Mesin, vol. 8, no. 1, pp. 69–78, 2019, doi: http://dx.doi.org/10.24127/trb.v8i1.924.
  10. O. Paris, C. Zollfrank, and G. A. Zickler, “Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis,” Carbon N. Y., vol. 43, no. 1, pp. 53–66, 2005, doi: https://doi.org/10.1016/j.carbon.2004.08.034.
  11. J. S. Tumuluru, B. Ghiasi, N. R. Soelberg, and S. Sokhansanj, “Biomass torrefaction process, product properties, reactor types, and moving bed reactor design concepts,” Front. Energy Res., vol. 9, p. 728140, 2021, doi: https://doi.org/10.3389/fenrg.2021.728140.
  12. L. Arie, “Perancangan Reaktor Pembuatan Arang Batok Kelapa Untuk Bahan Baku Briket (Tanpa Asap),” UNIVERSITAS MUHAMMADIYAH SUMATERA BARAT, Padang, 2022.
  13. H. Yahya, “Analisis Perpindahan Panas Pada Proses Pembakaran Batok Kelapa Menjadi Arang,” Universitas Muhammadiyah Sumatera Barat, 2022.
  14. J. Rochmadi, “Analisa Perbedaan Bahan Isolator (Glasswool, Tanah Liat dan Semen) Terhadap Efektifitas Proses Gasifikasi Batubara,” G-Tech J. Teknol. Terap., vol. 7, no. 1, pp. 262–269, 2023, doi: https://doi.org/10.33379/gtech.v7i1.2008.
  15. J. P. Holman, Heat Transfer”, sixth edition. New York: McGraw Hill, Ltd., 1986.
  16. T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Introduction to heat transfer. John Wiley & Sons, 2011.
  17. M. Karod, Z. A. Pollard, M. T. Ahmad, G. Dou, L. Gao, and J. L. Goldfarb, “Impact of Bentonite Clay on In Situ Pyrolysis vs. Hydrothermal Carbonization of Avocado Pit Biomass,” Catalysts, vol. 12, no. 6. 2022. doi: 10.3390/catal12060655.
  18. M. Gholizadeh et al., “Progress of the development of reactors for pyrolysis of municipal waste,” Sustain. Energy Fuels, vol. 4, no. 12, pp. 5885–5915, 2020, doi: https://doi.org/10.1039/D0SE01122C.
  19. S. Wardani, Pranoto, and D. A. Himawanto, “Kinetic parameters and calorific value of biochar from mahogany (Swietenia macrophylla King) wood pyrolysis with heating rate and final temperature variations,” in AIP Conference Proceedings, 2018, vol. 2049, no. 1, p. 20034. doi: https://doi.org/10.1063/1.5082439.
  20. M. A. Asyâ and R. Hidayatullah, “Geokimia batubara untuk beberapa industri,” Poros Tek., vol. 8, no. 1, pp. 48–54, 2016.
  21. N. Iskandar, S. Nugroho, and M. F. Feliyana, “Uji kualitas produk briket arang tempurung kelapa berdasarkan standar mutu SNI,” J. Ilm. Momentum, vol. 15, no. 2, 2019, doi: https://doi.org/10.36499/jim.v15i2.3073.
  22. W. Kusuma, A. Sarwono, and R. D. Noriyati, “Kajian eksperimental terhadap karakteristik pembakaran briket limbah ampas kopi instan dan kulit kopi (studi kasus di pusat penelitian kopi dan kakao Indonesia),” J. Tek. Pomits, pp. 2–4, 2013.
  23. Dewan Standarisasi Nasional (DSN), “Bubuk arang tempurung kelapa. (SNI06- 4369-1996),” Jakarta, 1996.
  24. S. Siahaan, M. Hutapea, and R. Hasibuan, “Penentuan kondisi optimum suhu dan waktu karbonisasi pada pembuatan arang dari sekam padi,” J. Tek. Kim. USU, vol. 2, no. 1, pp. 26–30, 2013, doi: https://doi.org/10.32734/jtk.v2i1.1423.
  25. K. D. L. LF, R. D. Ratnani, S. Suwardiyono, and N. Kholis, “Pengaruh Waktu Dan Suhu Pembuatan Karbon Aktif Dari Tempurung Kelapa Sebagai Upaya Pemanfaatan Limbah Dengan Suhu Tinggi Secara Pirolisis,” J. Inov. Tek. Kim., vol. 2, no. 1, 2017, doi: https://doi.org/10.31942/inteka.v2i1.1739.