Main Article Content
Abstract
This study evaluates the transient performance of a hydraulic Load Frequency Control (LFC) system configured with a single controller and without a governor. The analysis focuses on rise time, peak time, settling time, and overshoot, using various controllers including PI, PD, PID, PDF, and PIDF. Simulation results indicate that eliminating the governor significantly enhances system responsiveness and reduces overshoot, particularly when using the PDF controller. Quantitative analysis shows that the PDF controller achieves 85% faster rise time (0.101s vs 0.607s for P controller) and maintains system stability with minimal overshoot (1.765% for PID vs 59.263% for P controller). This configuration enables for a more direct and efficient control response to load fluctuations, improving system stability. Thus, employing a single controller without a governor presents a promising alternative for frequency regulation in hydraulic LFC systems under dynamic load conditions. The findings of this study offer valuable insights for optimizing controller selection and configuration in practical implementations, providing guidance for engineers and researchers to enhance grid reliability, operational efficiency, and stability in various real-world hydraulic power system scenarios.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c): Heru Dibyo Laksono, Dhea Rahmadani Putri, Mumuh Muharam (2025)References
- D. P. Kothari and I. J. Nagrath, Modern Power Systems Analysis. 2022. doi: 10.1201/9781003207429-6.
- F. R. Ningsih, “Simulasi Dan Analisa Sistem Kendali Frekuensi Tenaga Listrik Dengan Pilot Servo Dan Kombinasi Pengendali PIDTune Model Standar (Model Hidraulik),” J. Ilmu Pendidik., vol. 7, no. 2, pp. 809–820, 2020.
- V. T. W. Vina, “Analisis Setting Speed Droop dan Deadband Governor Unit 1 PLTA Maninjau Sebagai Pengaturan Frekuensi pada Sistem 150 KV,” J. Tek. Energi, vol. 11, no. 2, pp. 25–29, 2023, doi: 10.35313/energi.v11i2.3912.
- S. Asgari, M. B. Menhaj, A. A. Suratgar, and M. G. Kazemi, “A disturbance observer based fuzzy feedforward proportional integral load frequency control of microgrids,” Int. J. Eng. Trans. A Basics, vol. 34, no. 7, pp. 1694–1702, 2021, doi: 10.5829/IJE.2021.34.07A.13.
- H. D. Laksono and W. H. bin Mohd Saad, “Frequency Domain Analysis of Load Frequency Control Using PIDTune Model Standard,” Andalas J. Electr. Electron. Eng. Technol., vol. 3, no. 1, pp. 44–51, 2023, doi: 10.25077/ajeeet.v3i1.38.
- A. J. Pakpahan and Herlambang Setiadi, “Optimal Control Design for Frequency Regulation in Electric Power System With Low Inertia,” J. Adv. Technol. Multidiscip., vol. 3, no. 1, pp. 26–36, 2024, doi: 10.20473/jatm.v3i1.59984.
- A. D. Novfowan, M. Mieftah, and W. Kusuma, “Analisis Stabilitas Transien Tegangan dan Frekuensi pada Sistem Pembangkit Listrik Tenaga Uap,” ELPOSYS J. Sist. Kelistrikan, vol. 8, no. 1, pp. 28–33, 2021.
- N. A. Orka, S. S. Muhaimin, M. N. S. Shahi, and A. Ahmed, An Enhanced Gradient Based Optimized Controller for Load Frequency Control of a Two Area Automatic Generation Control System, vol. 1069. 2023. doi: 10.1007/978-3-031-16832-1_5.
- P. Kundur, “Power System Stability and Control,” Power System Stability and Control. 2007. doi: 10.1201/9781420009248.
- D. Marsudi, “Operasi Sistem Tenaga Listrik,” Graha Ilmu, no. April, pp. 2–5, 2006.
- M. Kusriyanto, H. S. Utama, and I. Effendi, “Prototype of Automatic Frequncy Control in Microhydro Power Plant with Dummy Load Based on Arduino Uno and Labview,” Teknoin, vol. 27, no. 1, pp. 1–8, 2021, doi: 10.20885/teknoin.vol27.iss1.art1.
- S. Y. Bhuran and S. P. Jadhav, “Design of PID, IMC and IMC based PID Controller for Hydro Turbine Power System of Non-minimum Phase Dynamics,” J. Robot. Control, vol. 5, no. 2, pp. 416–426, 2024, doi: 10.18196/jrc.v5i2.21342.
- A. K. Baliarsingh, S. K. Mohapatra, and P. M. Dash, “Fractional Order PD(1+ PI) Controller for Frequency Control of Power System with Renewable Sources and Electric Vehicle,” Electrica, vol. 24, no. 2, pp. 406–424, 2024, doi: 10.5152/electrica.2024.23143.
- N. G. Hingorani dan L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission System. Library of Congress Cataloging-in-Publication Data, 2000.
- T. Mustarin, “Desain Optimal Load Frequency Control (LFC) dengan Superconducting Magnetic Energy Storage (SMES) pada Sistem Pembangkit Listrik Tenaga Mikro Hidro Menggunakan Metode Firefly Algorithm,” p. 84, 2015, [Online]. Available: http://repository.its.ac.id/52255/
- Z.- Abidin, “Pemodelan Matematis Pengaturan Frekuensi Beban Sistem Tenaga Hibrid Turbin Angin-Diesel-PV,” JE-Unisla, vol. 5, no. 2, p. 392, 2020, doi: 10.30736/je.v5i2.497.
- A. Kumar, O. P. Malik, and G. S. Hope, “Effect of Governor Dead-Band on Variable Structure Controller Performance for Lfc of Interconnected Power Systems.,” IFAC Proc. Vol., vol. 18, no. 7, pp. 255–260, 1986, doi: 10.1016/s1474-6670(17)60443-9.
- A. Kiswantono, “Peningkatan Kinerja Pltb Melalui Kendali Frekuensi Fuzzy Logic,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, pp. 137–147, 2024, doi: 10.23960/jitet.v12i1.3948.
- C. S. M. Da Silva, N. J. F. Da Silva, F. A. D. C. Ayres Junior, R. L. P. De Medeiros, L. E. S. E. Silva, and V. F. De Lucena, “Experimental Implementation of Hydraulic Turbine Dynamics and a Fractional Order Speed Governor Controller on a Small-Scale Power System,” IEEE Access, vol. 12, no. March, pp. 40480–40495, 2024, doi: 10.1109/ACCESS.2024.3375349.
- E. D. Cahyono, “Simulasi Rancang Bangun Alat pH Balancer Berbasis Logika Fuzzy Menggunakan Arduino Uno,” Prosiding Seinar Nasional Forum Pendidikan Tinggi Teknik Elektro Indonesia (FORTEI) Regional VII, vol.7, no. 4, pp. 296–301, 2021, [Online]. Available: http://download.garuda.kemdikbud.go.id/article.php?article=2811419%5C&val=25026%5C&title=Simulasi Rancang Bangun Alat pH Balancer Berbasis Logika Fuzzy Menggunakan Arduino Uno
- B. Maharmi, I. Cholid, Syafii, and E. H. Arya, “Optimization of speed droop governor operation at the gas turbine cogeneration unit,” Indones. J. Electr. Eng. Comput. Sci., vol. 33, no. 1, pp. 20–30, 2024, doi: 10.11591/ijeecs.v33.i1.pp20-30.
- D. V. Doan, K. Nguyen, and Q. V. Thai, “Load-Frequency Control of Three-Area Interconnected Power Systems with Renewable Energy Sources Using Novel PSO~PID-Like Fuzzy Logic Controllers,” Engineering, Technology and Applied Science Research, vol. 12, no. 3. pp. 8597–8604, 2022. doi: 10.48084/etasr.4924.
- A. Fernández-Guillamón, E. Muljadi, and A. Molina-García, “Frequency control studies: A review of power system, conventional and renewable generation unit modeling,” Electr. Power Syst. Res., vol. 211, no. January, 2022, doi: 10.1016/j.epsr.2022.108191.
- M. Mokhtar, M. I. Marei, M. A. Sameh, and M. A. Attia, “An Adaptive Load Frequency Control for Power Systems with Renewable Energy Sources,” Energies, vol. 15, no. 2, pp. 1–22, 2022, doi: 10.3390/en15020573.
- I. A. Khan, H. Mokhlis, N. N. Mansor, H. A. Illias, L. Jamilatul Awalin, and L. Wang, “New trends and future directions in load frequency control and flexible power system: A comprehensive review,” Alexandria Eng. J., vol. 71, pp. 263–308, 2023, doi: 10.1016/j.aej.2023.03.040.
- H. D. Laksono, Pidtune Model Paralel Dan Model Standard. LPPM - Universitas Andalas, 2021.
- S. Datta and D. Chakraborty, “An LMI based PID controller for load frequency control in power system,” Proc. IEEE Int. Conf. Control Appl., no. August 2013, pp. 655–660, 2013, doi: 10.1109/CCA.2013.6662824.