Main Article Content

Abstract

Implants that can be absorbed by the body may be developed using alloy materials based on zinc (Zn), iron (Fe), copper (Cu), and silver (Ag). Zn-based alloys are known for their faster biodegradation rates, making them particularly suitable for biodegradable implant applications. The aim of this study is to determine the corrosion rate and hardness of Zn-0.5Fe-0.5Ag alloy specimens, as well as to examine the effects of heat treatment and the addition of Fe and Ag elements. The research utilizes a direct experimental observation method to analyze the mechanical properties of the Zn-0.5Fe-0.5Ag alloy. The microstructural analysis reveals differences between pure Zn specimens and Zn-0.5Fe-0.5Ag alloy specimens. In pure Zn, the largest grain size is observed in specimens without annealing treatment, while the smallest grain size is found in specimens annealed at 350°C. For the Zn-0.5Fe-0.5Ag alloy, the smallest grain size is observed in specimens annealed at 400°C, while the largest grain size appears in those annealed at 350°C. The addition of Fe and Ag to pure Zn significantly increases the hardness, with the hardness value rising from 33.77 HV (pure Zn) to 61.64 HV. In terms of corrosion, the highest corrosion rate in pure Zn was found in specimens without annealing. In contrast, the highest corrosion rate in the Zn-0.5Fe-0.5Ag alloy was observed in specimens annealed at 400°C. In conclusion, the addition of Fe and Ag elements, along with heat treatment, significantly affects the mechanical properties of the Zn-0.5Fe-0.5Ag alloy, improving both its hardness and influencing its corrosion behavior.

Keywords

Mechanical Properties Zn-0.5Fe-0.5 Ag Alloy Implants Corrosion Rate Hardness

Article Details

How to Cite
Ramadhan, A., Arafat, A., Habibie, F., Nurdin, H., & Mulianti, M. (2025). Analysis of Mechanical Properties of Zn-0.5Fe-0.5Ag Alloy for Body Absorbed Implant Applications. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 24(3), 197-206. https://doi.org/https://doi.org/10.24036/invotek.v24i3.1261

References

  1. G. Katarivas Levy and E. Aghion, “Influence of heat treatment temperature on corrosion characteristics of biodegradable EW10X04 Mg alloy coated with Nd,” Adv. Eng. Mater., vol. 18, no. 2, pp. 269–276, 2016, doi: https://doi.org/10.1002/adem.201500253.
  2. B. M. Holzapfel et al., “How smart do biomaterials need to be? A translational science and clinical point of view,” Adv. Drug Deliv. Rev., vol. 65, no. 4, pp. 581–603, 2013, doi: https://doi.org/10.1016/j.addr.2012.07.009.
  3. C. Shen et al., “Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn–1.2 Mg alloy for biodegradable implants,” RSC Adv., vol. 6, no. 89, pp. 86410–86419, 2016, doi: https://doi.org/10.1039/C6RA14300H.
  4. M. Niinomi, “Metallic biomaterials,” J. Artif. Organs, vol. 11, no. 3, pp. 105–110, 2008, doi: 10.1007/s10047-008-0422-7.
  5. G. Katarivas Levy, Y. Ventura, J. Goldman, R. Vago, and E. Aghion, “Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment,” Mater. Sci. Eng. C, vol. 62, pp. 752–761, 2016, doi: https://doi.org/10.1016/j.msec.2016.01.086.
  6. G. Katarivas Levy, J. Goldman, and E. Aghion, “The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper,” Metals, vol. 7, no. 10. 2017. doi: 10.3390/met7100402.
  7. E. Aghion, G. Levy, and S. Ovadia, “In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy,” J. Mater. Sci. Mater. Med., vol. 23, no. 3, pp. 805–812, 2012, doi: 10.1007/s10856-011-4536-8.
  8. X. Tong et al., “Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants,” Acta Biomater., vol. 102, pp. 481–492, 2020, doi: https://doi.org/10.1016/j.actbio.2019.11.031.
  9. Y. Hou et al., “Synthesis of biodegradable Zn-based scaffolds using NaCl templates: Relationship between porosity, compressive properties and degradation behavior,” Mater. Charact., vol. 137, pp. 162–169, 2018, doi: https://doi.org/10.1016/j.matchar.2018.01.033.
  10. M. Murakami and T. Hirano, “Intracellular zinc homeostasis and zinc signaling,” Cancer Sci., vol. 99, no. 8, pp. 1515–1522, 2008, doi: https://doi.org/10.1111/j.1349-7006.2008.00854.x.
  11. H. Tapiero and K. D. Tew, “Trace elements in human physiology and pathology: zinc and metallothioneins,” Biomed. Pharmacother., vol. 57, no. 9, pp. 399–411, 2003, doi: https://doi.org/10.1016/S0753-3322(03)00081-7.
  12. B. Hennig, M. Toborek, and C. J. McClain, “Antiatherogenic properties of zinc: Implications in endothelial cell metabolism,” Nutrition, vol. 12, no. 10, pp. 711–717, 1996, doi: https://doi.org/10.1016/S0899-9007(96)00125-6.
  13. D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák, “Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation,” Acta Biomater., vol. 7, no. 9, pp. 3515–3522, 2011, doi: https://doi.org/10.1016/j.actbio.2011.05.008.
  14. S. Yang, W. Wang, Y. Xu, Y. Yuan, and S. Hao, “Fe–Zn alloy, a new biodegradable material capable of reducing ROS and inhibiting oxidative stress,” Regen. Biomater., vol. 11, p. rbae002, Jan. 2024, doi: 10.1093/rb/rbae002.
  15. A. G. Lasera, H. Aritonang, and H. Koleangan, “Sintesis dan karakterisasi nanopartikel CuFe2O4 serta aplikasinya sebagai antibakteri,” Chem. Prog., vol. 12, no. 2, pp. 88–92, 2020, doi: https://doi.org/10.35799/cp.12.2.2019.27312.
  16. Ximei Xiao, Enyang Liu, Jinlong Shao, and Shaohua Ge, “Advances on biodegradable zinc-silver-based alloys for biomedical applications,” J. Appl. Biomater. Funct. Mater., vol. 19, p. 22808000211062410, Jan. 2021, doi: 10.1177/22808000211062407.
  17. A. Heiss, V. S. Thatikonda, A. Richter, L.-Y. Schmitt, D. Park, and U. E. Klotz, “Development, Processing and Aging of Novel Zn-Ag-Cu Based Biodegradable Alloys,” Materials, vol. 16, no. 8. 2023. doi: 10.3390/ma16083198.
  18. A. B. Hardness, “Standard test method for microindentation hardness of materials,” ASTM Comm. West Conshohocken, PA, USA, vol. 384, p. 399, 1999, doi: 10.1520/E0384-17.
  19. M. O. Alawad et al., “Optimizing the ECAP Parameters of Biodegradable Mg-Zn-Zr Alloy Based on Experimental, Mathematical Empirical, and Response Surface Methodology,” Materials, vol. 15, no. 21. 2022. doi: 10.3390/ma15217719.
  20. A. Kafri, S. Ovadia, J. Goldman, J. Drelich, and E. Aghion, “The Suitability of Zn–1.3%Fe Alloy as a Biodegradable Implant Material,” Metals, vol. 8, no. 3. 2018. doi: 10.3390/met8030153.
  21. M. Riaz, S. Shahzadi, H. Imtiaz, and T. Hussain, “Effects of Ag, Cu or Fe addition on microstructure and comprehensive properties of biodegradable Zn-Mg alloy,” Mater. Today Commun., vol. 38, p. 108513, 2024, doi: https://doi.org/10.1016/j.mtcomm.2024.108513.
  22. H. Yilmazer et al., “A comprehensive study on microstructure, in-vitro biodegradability, bacterial sensitivity, and cellular interactions of novel ternary Zn-Cu-xAg alloys for urological applications,” J. Alloys Compd., vol. 965, p. 171290, 2023, doi: https://doi.org/10.1016/j.jallcom.2023.171290.