Main Article Content

Abstract

This study aims to analyze the effect of variations in inlet velocity on fluid flow patterns at tee-junction pipe connections using numerical simulations based on Computational Fluid Dynamics (CFD). The SimScale platform was used because it supports cloud-based processing and integration with OpenFOAM solvers. The tee connection model is designed in three dimensions, with the main and branch pipe dimensions each having a diameter of 100 mm. The merging process uses the parametric hexagonal method and local refinement in the joint area to accurately capture turbulent phenomena. Simulations were performed under incompressible and isothermal flow conditions with a standard k–ε turbulence model, using water fluid and the SIMPLE algorithm. The inlet velocity consists of 2 variations A (VI = 1 m/s, V2 = -1 m/s) and variation B (V1 = -1.5 m/s, V2 = -3 m/s). Simulation results show that increasing the inlet velocity results in a more turbulent flow, characterized by an increase in the turbulent kinematic viscosity, specific dissipation rate, and turbulent kinetic energy. Conversely, low velocities indicate higher pressure accumulation due to flow resistance. These findings indicate that inlet velocity variations significantly affect flow characteristics, requiring attention in system design to maintain long-term operational efficiency and reliability.

Keywords

CFD SimScale Inlet Velocity Fluid Flow

Article Details

How to Cite
Hasbiyati, H., & Aulina, A. (2025). CFD Simulation of Pipe Joints Using SimScale: Analysis of the Effect of Different Inlet Velocities on Water Fluid Flow. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 25(1), 23-38. https://doi.org/https://doi.org/10.24036/invotek.v25i1.1263

References

  1. B. Sun, Q. Liu, H. Fang, C. Zhang, Y. Lu, and S. Zhu, “Numerical and Experimental Study of Turbulent Mixing Characteristics in a T-Junction System,” Applied Sciences 2020, Vol. 10, Page 3899, vol. 10, no. 11, p. 3899, Jun. 2020, doi: 10.3390/APP10113899.
  2. J. Duan and X. Huang, “An unsteady RANS study of thermal striping in a T-junction with sodium streams mixing at different temperatures,” Front Energy Res, vol. 10, Jan. 2023, doi: 10.3389/FENRG.2022.991763.
  3. E. S. Taha, M. A. Abdulwahid, A. M. A. Morad, and Q. A. Maatooq, “Computational Fluid Dynamic Analysis of the Flow though T-junction and Venturi Meter,” Thermal Mechanical Engineering and Fuel Energy Deartmentt, vol. 1, p. 4, 2022, doi: 10.4108/eai.7-9-2021.2314880.
  4. K. Zhang, Z. Hu, S. Zhu, Y. Wang, W. Wang, and K. Deng, “Study on a new pressure loss model of T-junction for compressible flow with particle image velocimetry test,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 236, no. 2, pp. 273–292, Mar. 2022, doi: 10.1177/09576509211037638.
  5. A. Hamad, S. Mohammed, A. Aftab, and K. A. Ahmad, “Reducing Flow Separation in T-Junction Pipe Using Vortex Generator: CFD Study,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage, vol. 44, pp. 36–46, 2018.
  6. M. Dafa and F. Labik, “Computer Simulation in Fluid Movement Analysis” Journal of Science and Mathematics Education, vol. 1, no. 1, pp. 21–25, Mar. 2025, doi: 10.70716/JOSME.V1I1.153.
  7. P. P. Jati, and D. A. Widyaparaga, “CFD Simulation of Wave Velocity Dynamics of Two-Phase Oil-Water Stratified Wavy Flow in Horizontal Pipe” Journal of Mechanical Design and Testing, vol. 3, no. 1, pp. 1–11, Jun. 2021, doi: 10.22146/JMDT.56417.
  8. M. Fathonah Muvariz et al., “Strength Analysis of Elbow 450 Pipe Against Fuel Oil Fluid Flow on Tugboats,” INOVTEK Polbeng, vol. 14, no. 02, pp. 117–129, Nov. 2024, doi: 10.35314/YVK2EH69.
  9. D. Romanova et al., “Calibration of the k-ω SST Turbulence Model for Free Surface Flows on Mountain Slopes Using an Experiment,” Fluids 2022, Vol. 7, Page 111, vol. 7, no. 3, p. 111, Mar. 2022, doi: 10.3390/FLUIDS7030111.
  10. N. Sakamoto, T. Hino, H. Kobayashi, and K. Ohashi, “Parameter adaptation of k − ω SST turbulence model for improving resolution of moderately separated flows around 2D wing and 3D ship hulls via EnKF data assimilation,” Journal of Marine Science and Technology (Japan), vol. 29, no. 4, pp. 885–909, Dec. 2024, doi: 10.1007/S00773-024-01026-Y/FIGURES/31.
  11. B. D. Gajbhiye, H. A. Kulkarni, S. S. Tiwari, and C. S. Mathpati, “Teaching turbulent flow through pipe fittings using computational fluid dynamics approach,” Engineering Reports, vol. 2, no. 1, p. e12093, Jan. 2020, doi: 10.1002/ENG2.12093;WEBSITE:WEBSITE:PERICLES;WGROUP:STRING:PUBLICATION.
  12. P. T. Ndiaye and O. N. Thiam, “Computational fluid dynamics analysis of the influence of velocity at inlet 2 on heat transfer and fluid flow in the mixing elbow,” Journal of Scientific and Engineering Research, vol. 2024, no. 2, pp. 93–101, Accessed: Jun. 11, 2025. [Online]. Available: www.jsaer.com
  13. Simulation Software Engineering AI in the Cloud SimScale. Accessed: Jun. 11, 2025. [Online]. Available: https://www.simscale.com/
  14. F. Moukalled, L. Mangani, and M. Darwish, “The Finite Volume Method in Computational Fluid Dynamics,” vol. 113, 2016, doi: 10.1007/978-3-319-16874-6.
  15. Z. Robison, J. P. Mosele, A. Gross, and S. Lynch, “Numerical investigation of turbulent junction flows,” AIAA Journal, vol. 59, no. 11, pp. 4642–4659, 2021, doi: 10.2514/1.J059468.
  16. M. J. Mahanta, A. Gupta, S. S. Bodda, S. G. Cho, and G. So, “Characterizing the cyclic behavior of piping T-joint connections,” International Journal of Pressure Vessels and Piping, vol. 211, p. 105284, Oct. 2024, doi: 10.1016/J.IJPVP.2024.105284.
  17. M. Nuruzzaman, W. Pao, H. Ya, M. R. Islam, M. A. Adar, and F. Ejaz, “Simulation Analysis of Thermal Mixing Characteristics of Fluids Flowing through a Converging T-junction,” CFD Letters, vol. 13, no. 9, pp. 28–41, Sep. 2021, doi: 10.37934/CFDL.13.9.2841.
  18. C. Dianita, R. Piemjaiswang, and B. Chalermsinsuwan, “CFD simulation and statistical experimental design analysis of core annular flow in T-junction and Y-junction for oil-water system,” Chemical Engineering Research and Design, vol. 176, pp. 279–295, Dec. 2021, doi: 10.1016/J.CHERD.2021.10.011.
  19. M. Zhang, Y. Cui, W. An, H. Wang, L. Wang, and S. Liu, “Investigation of the Effect of Side Arm Orientation of the T-Junction on Gas–Liquid Stratified Flow,” Processes 2023, Vol. 11, Page 2949, vol. 11, no. 10, p. 2949, Oct. 2023, doi: 10.3390/PR11102949.
  20. M. Luaibi and M. Abdulwahid, “Numerical Analysis by Computational Fluid Dynamic Simulation of Fluid Flow in A T- Junction,” Mar. 2022, doi: 10.4108/EAI.7-9-2021.2314888.
  21. D. Deepak, D. Anjaiah, K. V. Karanth, and N. Y. Sharma, “CFD Simulation of Flow in an Abrasive Water Suspension Jet: The Effect of Inlet Operating Pressure and Volume Fraction on Skin Friction and Exit Kinetic Energy,” Advances in Mechanical Engineering, vol. 2012, 2012, doi: 10.1155/2012/186430.
  22. Z. Wang et al., “Statistics of kinetic and thermal energy dissipation rates in vibrational turbulent Rayleigh–Bénard convection with rough surface,” Numeri Heat Transf A Appl, 2024, doi: 10.1080/10407782.2024.2379621;WGROUP:STRING:PUBLICATION.
  23. R. Rasooli, O. Dur, and K. Pekkan, “Estimation of pulsatile energy dissipation in intersecting pipe junctions using inflow pulsatility indices,” AIP Adv, vol. 11, no. 1, Jan. 2021, doi: 10.1063/5.0014450/1071240.
  24. M. D. Bassett, R. J. Pearson, and D. E. Winterbone, “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 215, no. 8, pp. 861–882, 2001, doi: 10.1243/0954406011524199.
  25. M. Al Amin, “CFD analysis of velocity distribution and pressure drop in laminar pipe flow,” 2024, Accessed: Jun. 11, 2025. [Online]. Available: http://www.theseus.fi/handle/10024/877564
  26. G. Siqueira de Aquino, R. Silva Martins, M. Ferreira Martins, and R. Ramos, “An Overview of Computational Fluid Dynamics as a Tool to Support Ultrasonic Flow Measurements,” Metrology 2025, Vol. 5, Page 11, vol. 5, no. 1, p. 11, Feb. 2025, doi: 10.3390/METROLOGY5010011.
  27. S. Safaruddin, M. Mahmuddin, and A. Tando, “Pressure characteristics of flow passing through vertical pipe bends in radial and tangential directions” Sultra Journal of Mechanical Engineering (SJME), vol. 1, no. 1, pp. 25–32, Oct. 2022, doi: 10.54297/SJME.V1I1.306.
  28. E. S. Taha, M. A. Abdulwahid, A. M. A. Morad, and Q. A. Maatooq, “Computational Fluid Dynamic Analysis of the Flow though T-junction and Venturi Meter,” Thermal Mechanical Engineering and Fuel Energy Deartmentt, vol. 1, p. 4, 2022, doi: 10.4108/eai.7-9-2021.2314880.
  29. Computational Fluid Dynamics: A Practical Approach, Jiyuan Tu, Guan Heng Yeoh, Chaoqun Liu, Yao Tao, Google Books. Accessed: Jun. 11, 2025. [Online]. Available: https://books.google.co.id/books?hl=en&lr=&id=_3OyEAAAQBAJ&oi=fnd&pg=PP1&dq=Computational+Fluid+Dynamics:+A+Practical+Approach+(3rd+ed.)&ots=IRZOJQl-fr&sig=HFrMxy8vwp6vYvu77WKbj_ffIVE&redir_esc=y#v=onepage&q=Computational%20Fluid%20Dynamics%3A%20A%20Practical%20Approach%20(3rd%20ed.)&f=false
  30. M. Zhou, J. Li, Z. Qiu, and N. Zhang, “Numerical investigation of thermal-mixing characteristics at vertically oriented T-junction pipelines,” Int J Heat Fluid Flow, vol. 106, p. 109292, Apr. 2024, doi: 10.1016/J.IJHEATFLUIDFLOW.2024.109292.
  31. L. Zhao, J. Chen, and G. Duan, “Turbulent flow in an I-L junction: Impacts of the pipe diameter ratio,” Physics of Fluids, vol. 36, no. 2, Feb. 2024, doi: 10.1063/5.0189282/3262862.
  32. ANSYS FLUENT 12.0 Theory Guide. Accessed: Jun. 08, 2025. [Online]. Available: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm