Main Article Content
Abstract
One type of information system that is currently experiencing rapid development is RFID (Radio Frequency Identification). The system is used to provide high flexibility, easy to use, and is highly suited to activities that require automation. This system has also been used to replace the Barcode system function which is considered less flexible especially in the case of tracerability. This paper aims to explore the potential application of RFID in agriculture, both in technological developments, what applications can be used with RFID, constraints and Prospects. This is to assist in directing the agricultural sector in accordance with revolution 4.0, in order for agriculture in the small area primarily, able to compete in globalization. The method used is a review of the research journal in connection with RFID, and its application in the World of Agriculture. Of the 100 Journals downloaded, only about 53 Journals are in line with the purpose of this review. The source of JUrnal is. Google Scholar, World Web Science (WWS), Science Direct and other open access journals. The majority of research is obtained through the search method
Article Details
References
- [1] Aldillah, R. (n.d.). Kinerja Pemanfaatan Mekanisasi Pertanian dan Implikasinya dalam Upaya Percepatan Produksi Pangan di Indonesia. Forum Penelitian Agro Ekonomi, Vol. 34 No. 2, Desember 2016: 163-177.
- [2] Aldillah, R. (n.d.). Kinerja Pemanfaatan Mekanisasi Pertanian dan Implikasinya dalam Upaya Percepatan Produksi Pangan di Indonesia. Forum Penelitian Agro Ekonomi, Vol. 34 No. 2, Desember 2016: 163-177.
- [3] Aqeel-ur-Rehman a, b. A. (n.d.). A review of wireless sensors and networks' applications in agriculture. Computer Standards & Interfaces 36 (2014) 263–270. 2011 Elsevier B.V. All rights reserved.
- [4] Athanasios T. Balafoutis, B. B.-E.-B. (n.d.). Smart Farming Technologies – Description, Taxonomy and Economic Impact . Athanasios T. Balafoutis, Bert Beck, Spyros Fountas, Zisis Tsiropoulos, Jürgen Vangeyte, Tamme van der Wal, I. Soto-Embodas, Manuel Gómez-Barbero, and Søren Marcus Pedersen.
- [5] Azhar Hasan, R. B. (n.d.). A Monopole-Coupled RFID Sensor For Pervasive Soil Moisture Monitoring. DOI: 10.1109/APS.2013.6711813 . IEEE 27 January 2014 .
- [6] B D Dokin, A. A. (n.d.). Prospects and features of robotics in russian crop farming. IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012032 doi:10.1088/1742-6596/803/1/012032.
- [7] Diana Rahmawati1, d. K. (n.d.). Perancangan kebun Mini hemat asitr dengan Sistem Mikro Irigasi Fuzzy Otomatis Menggunakan Arduino . Rekayasa Vol. 8, No. 2, Oktober 2015, hlm. 95-108.
- [8] Dong, L. J. (n.d.). Monitoring the number and size of pests based on modulated infrared beam sensing technology . Precision Agric https://doi.org/10.1007/s11119-018-9576-3 . Springer Science+Business Media, LLC, part of Springer Nature 2018.
- [9] Dr. K A SUNITHA G S G S Suraj, C. P. (n.d.). Agricultural robot designed for seeding mechanism . IOP Conf. Series: Materials Science and Engineering 197 (2017) 012043 doi:10.1088/1757-899X/197/1/012043.
- [10] Erica Varese, S. B. (n.d.). Application Of RFID Technology To The AgroIndustrial Sector : Analysis of Some Case Studyies. J. COMMODITY SCI. TECHNOL. QUALITY 2008, 47 (I-IV), 171-190.
- [11] ERICA VARESE, S. B. (n.d.). APPLICATION OF RFId TECHNOLOGY TO THE AGRO-INDUSTRIAL SECTOR: ANALYSIS OF SOME CASE STUDIES . J. COMMODITY SCI. TECHNOL. QUALITY 2008, 47 (I-IV), 171-190
- [12] ERICA VARESE, S. B. (n.d.). APPLICATION OF RFId TECHNOLOGY TO THE AGRO-INDUSTRIAL SECTOR: ANALYSIS OF SOME CASE STUDIES . J. COMMODITY SCI. TECHNOL. QUALITY 2008, 47 (I-IV), 171-190.
- [13] Fang, J. A. J. S. S. K. Y. H. T. (n.d.). Toward a higher yield: a wireless sensor network based temperature monitoring and fan circulating system for precision cultivation in plant factories . Precision Agric https://doi.org/10.1007/s11119-018-9565-6 . © Springer Science+Business Media, LLC, part of Springer Nature 2018 .
- [14] Fang, J. A. J. S. S. K. Y. H. T. (n.d.). Toward a higher yield: a wireless sensor network based temperature monitoring and fan circulating system for precision cultivation in plant factories . Precision Agric https://doi.org/10.1007/s11119-018-9565-6. Springer Science+Business Media, LLC, part of Springer Nature 2018 .
- [15] Foughali Karima, F. K. (n.d.). Monitoring system using web of things in precision agriculture. ScienceDirect Available online at www.sciencedirect.com Procedia Computer Science 110 (2017) 402–409 .
- [16] Gali Navehab, A. E. (n.d.). Information Technology Education in a Digital Factory Learning Environment . Information Technology Education in a Digital Factory Learning Environment, Intelligent Automation & Soft Computing, DOI: 10.1080/10798587.2015.1022346.
- [17] hha, K. (n.d.). Operational Monitoring System OMS with WSN (Wireless Sensor Network), RFID, GPS & CCTV in Agriculture. Kadc hha, Orient. J. Comp. Sci. & Technol., Vol. 9(1), 41-45 (2016). http://dx.doi.org/10.13005/ojcst/901.08 .
- [18] Hidayat, T. (n.d.). Internet of Things Smart Agriculture on ZigBee: A Systematic Review. IncomTech, Jurnal Telekomunikasi dan Komputer, vol. 8, no.1, Juni 2017.
- [19] Hongsheng Xu, R. Z. (n.d.). Using RFID technology to development of agricultural products quality safety traceability system on Internet of things. Journal of Chemical and Pharmaceutical Research, 2014, 6(10):632-638.
- [20] Jaiganesh.S, G. V. (n.d.). IOT Agriculture to improve Food and Farming Technology. Proc. IEEE Conference on Emerging Devices and Smart Systems (ICEDSS 2017) 3-4 March 2017,.
- [21] Jun Zhang, G. Y. (n.d.). A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications. Sensors 2017, 17, 265; doi:10.3390/s17020265. sensors .
- [22] Ke, F. T. (n.d.). Smart Agriculture Based on Cloud Computing and IOT. Journal of Convergence Information Technology(JCIT)Volume 8, Number 2, Jan 2013 doi : 10.4156/jcit.vol8.issue2.26.
- [23] Kienzle, B. S. (n.d.). Sustainable Agricultural Mechanization for Smallholders: What Is It and How Can We Implement It? Agriculture 2017, 7, 50; doi:10.3390/agriculture7060050.
- [24] Kwangho Jung ; Sabinne Lee. (n.d.). A systematic review of RFID applications and diffusion: key areas and public policy issues. Journal of Open Innovation: Technology, Market, and Complexity (2015) 1:9 DOI 10.1186/s40852-015-0010-z.
- [25] Lee, K. J. (n.d.). A systematic review of RFID applications and diffusion: key areas and public policy issues. Journal of Open Innovation: Technology, Market, and Complexity (2015) 1:9 DOI 10.1186/s40852-015-0010-z .
- [26] Luis Ruiz-Garcia, L. L. (n.d.). The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture 79 (2011) 42–50. _x005f_x005f_x005f_x005f_x0002_ 2011 Elsevier B.V. All rights reserved.
- [27] Madhuri Sharon, A. K. (n.d.). NANOTECHNOLOGY IN AGRICULTURAL DISEASES AND FOOD SAFETY. Journal of Phytology 2010, 2(4): 83–92.
- [28] Michael J. O’Grady, G. M. (n.d.). Modelling the smart farm.
- [29] Michailidis, G. K. (n.d.). Educational needs and perceptions of the sustainability of precision agriculture: survey evidence from Greece. Precision Agric DOI 10.1007/s11119-017-9537-2. Springer Science+Business Media, LLC 2017.
- [30] Mohanraj, K. A. (n.d.). Field Monitoring and Automation using IOT in Agriculture Domain. Procedia Computer Science 93 ( 2016 ) 931 – 939 ScienceDirect.
- [31] Mohanraj, K. A. (n.d.). Field Monitoring and Automation using IOT in Agriculture Domain. 6th International Conference On Advances In Computing & Communications, ICACC 2016, 6-8 September 2016, Cochin, India .
- [32] Neha Kaushik, N. C. (n.d.). Automatic relationship extraction from agricultural text for ontology construction . Elsevier INFORMATION PROCESSING IN AGRICULTURE 5 (2018) 60–73.
- [33] Pajares, Y. C. (n.d.). Comparative analysis of texture descriptors in maize fields with plants, soil and object discrimination. Precision Agric. Springer Science+Business Media New York 2016 DOI 10.1007/s11119-016-9483-4.
- [34] Rafael V. Aroca, A. C. (n.d.). Application of Standard EPC/GEN2 UHF RFID Tags as Soil Moisture Sensors. Proceedings 2017, 1, 10; doi:10.3390/ecsa-3-S5001.
- [35] Rafael V. Aroca, A. C. (n.d.). Calibration of Passive UHF RFID Tags Using Neural Networks to. Hindawi Journal of Sensors Volume 2018, Article ID 3436503, 12 pages https://doi.org/10.1155/2018/3436503.
- [36] Ravid, A. G. (n.d.). Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge. Springer Science+Business Media New York 2017. Precision Agric. DOI 10.1007/s11119-017-9527-4.
- [37] Robert Schima, H. M. (n.d.). Technical Note Imagine All the Plants: Evaluation of a Light-Field Camera for On-Site Crop Growth Monitoring. Remote Sens. 2016, 8, 823; doi:10.3390/rs8100823. www.mdpi.com/journal/remotesensing.
- [38] S. K. GOYAL*, P. S. (n.d.). Agricultural Mechanization for Sustainable Agricuklturea and Rural Development in Eastern. U.P, A Review. Agriculture for Sustainable Development 2(1):192-198, 2014/Article.
- [39] Sander J.C. Janssen a, ⁎. C. (n.d.). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology . Agricultural Systems 155 (2017) 200–212. Elseiver.
- [40] Sangkil Kim, T. L. (n.d.). An RFID-enabled Inkjet-printed Soil Moisture Sensor on Paper for "Smart" Agricultural Applications. 978-1-4799-0162-3/14/$31.00 ©2014 IEEE.
- [41] Sérgio Francisco Pichorim, N. J. (n.d.). Two Solutions of Soil Moisture Sensing with RFID for Landslide Monitoring. Sensors 2018, 18, 452; doi:10.3390/s18020452.
- [42] Seyed Hamed Alemohammad, J. K. (n.d.). Global Downscaling of Remotely-Sensed Soil Moisture using Neural Networks. Hydrol. Earth-Syst-Sci..https://doi.org/10.5194/hess-2017-680. 8 February 2018 .
- [43] T. K. Hamrita, E. C. (n.d.). Development of A “Smart” Wireless Solil Monitoring Sensor Prototype Using RFID Technology. Applied Engineering in Agriculture Vol. 21(1): 139−143 2005 American Society of Agricultural Engineers ISSN 0883−8542.
- [44] Tajudee abiodun, A. Y. (n.d.). An RFID-based Variabekl Rate Technology Fertilizer Applicator for Tree Corp. Journal of Applied Science 13 (3): 409-415, 2013/ DOI : 10.3923/jas 2014.409.415.
- [45] Takeshima, H. (n.d.). Effects of Agricultural Mechanization on Smallholders and their Self-Selection into Farming. IFPRI Discussion Paper 01583.
- [46] Tan, L. (n.d.). Cloud-based Decision Support and Automation for Precision Agriculture in Orchards. IFAC-PapersOnLine 49-16 (2016) 330–335 .
- [47] Tien-Dung Nguyen, T.-P. C.-H.-H. (n.d.). On improving agricultural IoT management. Journal of Information and Telecommunication, 1:3, 208-223, DOI: 10.1080/24751839.2017.1347393.
- [48] Timo Oksanen, R. L. (n.d.). Adapting an industrial automation protocol to remote monitoring of mobile agricultural machinery: a combine harvester with IoT. Science Direct. IFAC-PapersOnLine 49-16 (2016) 127–131.
- [49] Xiaolin Jia, Q. F. (n.d.). RFID Technology and Its Applications in Internet of Things (IOT) . 978-1-4577-1415-3/12/$26.00 ©2012 IEEE.
- [50] Y Bhavya, B. V. (n.d.). Mechanization and automation trends in the urban dairy farms: A review. The Pharma Innovation Journal 2018; 7(3): 158-160.
- [51] Yusuf Priyandari, Y. ,. (n.d.). Desain Model Sistem Ketertelusuran Buah-Buahan di Tingkat Petani Menggunakan Teknologi RFID. Desain Model Sistem Ketertelusuran Buah-Buahan di Tingkat Petani Menggunakan Teknologi RFID.
- [52] Zhang, C. Z. (n.d.). An RFID-based solution for monitoring sprayer movement in an orchard/vineyard. Precision Agric (2018) 19:477–496 https://doi.org/10.1007/s11119-017-9531-8.
- [53] Zhao Liqiang, Y. S. (n.d.). A Crop Monitoring System Based on Wireless Sensor Network. Procedia Environmental Sciences 11 (2011) 558 – 565.