Main Article Content

Abstract

Sebuah desain bangunan yang baik harus memperhatikan karakteristik geografis, kondisi lingkungan dan iklim setempat dimana bangunan didirikan. Salah satu faktor penting yang dapat mempengaruhi kenyamanan termal bangunan adalah pengaruh inersia termal tanah dan material selubung bangunan. Tujuan penelitian ini adalah untuk menganalisa pengaruh inersia termal tanah terhadap perubahan temperatur dan kenyamanan penghuni didalam ruangan. Pada bagian pertama, karakteristik bangunan dan pemodelan numerik akan dijelaskan yang dilengkapi dengan data iklim lokasi dimana studi kasus dilakukan. Perpindahan panas yang terjadi dari bangunan menuju tanah dan sebaliknya digambarkan secara detil pada bagian selanjutnya dengan menggunakan pendekatan model perpindahan panas tiga dimensi. Hasil simulasi numerik menggunakan TRNSYS (R) menunjukan bahwa inersia termal tanah berpengaruh secara signifikan terhadap suhu dan kenyamanan ruangan. Tanah dengan konduktivitas dan kapasistas termal yang baik mampu menurunkan tingkat ketidaknyamanan ruangan hingga 21.9%.

Article Details

How to Cite
Lapisa, R., Krismadinata, K., Arwizet, A., Martias, M., Arif, A., & Setiawan, M. (2018). Pengaruh Inersia Termal Tanah Terhadap Kenyamanan Ruangan. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 18(1), 99-106. https://doi.org/https://doi.org/10.24036/invotek.v18i1.271

References

  1. G. W. Evans and J. M. McCoy, ‘When buildings don’t work: The role of architecture in human health’, J. Environ. Psychol., vol. 18, no. 1, pp. 85–94, 1998.
  2. [2] M. Santamouris et al., Advances in passive cooling. London , UK: Earthscan, 2007.
  3. [3] P.C. Yu and W.Chow, ‘Energy use in commercial buildings in Hong Kong’, Appl. Energy, vol. 69, pp. 243–255, Mar. 2001.
  4. [4] X. Cao, X. Dai, and J. Liu, ‘Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade’, Energy Build., vol. 128, pp. 198–213, Sep. 2016.
  5. [5] IPCC, ‘Climate Change 2014 Mitigation of Climate Change : Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change’. Cambridge University Press, 2014.
  6. [6] Z. Romani, R. Lapisa, A. Draoui, and F. Allard, ‘Multicritera optimization on the energy-saving refurbishment of existing buildings to achieve low energy consumption by considering the climatic change’, 2016.
  7. [7] R. Lapisa, E. Bozonnet, P. Salagnac, and M. O. Abadie, ‘Optimized design of low-rise commercial buildings under various climates – Energy performance and passive cooling strategies’, Build. Environ., vol. 132, pp. 83–95, Mar. 2018.
  8. [8] M. H. Adjali, M. Davies, S. W. Rees, and J. Littler, ‘Temperatures in and under a slab-on-ground floor: two- and three-dimensional numerical simulations and comparison with experimental data’, Build. Environ., vol. 35, no. 7, pp. 655–662, Oct. 2000.
  9. [9] T. Kusuda and J. W. Bean, ‘Simplified methods for determining seasonal heat loss from uninsulated slab-on-grade floors’, ASHRAE TransUnited States, vol. 90, no. CONF-840124-, 1984.
  10. [10] ISO EN 15251, ‘Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics’. International Organization for Standardization, 2007.
  11. [11] NF EN ISO 7726, ‘Ergonomie des ambiances thermiques - Appareils de mesure des grandeurs physiques’, Jan. 2002.
  12. [12] Meteonorm, ‘Meteonorm Software : Meteonorm is a unique combination of reliable data sources and sophisticated calculation tools’. 2015.
  13. [13] M. Deru, K. Filed, D. Studer, B. Kyle, B. Griffith, and P. Torcellini, U.S. Department of Energy Commercial Reference Building Models of the National Building Stock, vol. NREL/TP-5500-46861. Colorado,US: National Renewable Energy Laboratory, 2011.
  14. [14] ISO 7730, ‘Ergonomics of thermal environment-Analytical determination and interpretation of thermal comfort using calculation of PMV and PPD indices and local thermal comfort criteria’, 2006.
  15. [15] H. Bareither, A. Fleming, and B. Alberty, ‘Temperature and heat loss characteristics of concrete floors laid on the ground’, University of Illinois, Illinois, USA, Research report 48–1, Aug. 1948.
  16. [16] A. E. Delsante, ‘Theoretical calculations of the steady-state heat losses through a slab-on- ground floor’, Build. Environ., vol. 23, no. 1, pp. 11–17, 1988.
  17. [17] H. H. Macey, ‘Heat loss through a solid floor’, J. Inst. Fuel, vol. 22, pp. 369–371, 1949.
  18. [18] A. E. Delsante, A. N. Stokes, and P. J. Walsh, ‘Application of Fourier transforms to periodic heat flow into the ground under a building’, Int. J. Heat Mass Transf., vol. 26, no. 1, pp. 121–132, 1983.
  19. [19] R. W. R. Muncey and J. W. Spencer, ‘Heat flow into the ground under a house’, Energy Conserv. Heat. Cool. Vent. Build., vol. 2, pp. 649–660, 1978.
  20. [20] O. Vuorelainen, The temperatures under houses erected immediately on the ground and the heat losses from their foundation slab, vol. 55. Finland Institute of Technology., 1960.
  21. [21] B. R. Anderson, ‘Calculation of the steady-state heat transfer through a slab-on-ground floor’, Build. Environ., vol. 26, no. 4, pp. 405–415, 1991.
  22. [22] J.hornton et al., ‘TRNSYS 17 manual book : Mathematical reference’. Solar Energy Laboratory, Mar-2012.
  23. [23] T. Kusuda and P. R. Achenbach, ‘Earth temperature and thermal diffusivity at selected stations in the United States’, DTIC Document, 1965.