Main Article Content

Abstract

Recent advancements in air conditioning (AC) technologies, such as inverters, enable the compressor to remain activated despite reaching the setpoint temperature. This study investigates the cooling performance and electrical parameters of a split inverter AC system controlled by a microcontroller in order to determine the operational performance characteristics of the air conditioning system. An ATmega 2560 microcontroller integrated with PZEM, DS18B20, and LCD I2C sensors monitors was 8,525 Btu/h capacity split inverter AC. During a 1-hour experimental run, the temperature differential between supply air (Tsupply) and return air (Treturn) stabilized at approximately 17 °C, with Tsupply reaching a minimum of 8.5 °C. Treturn remained relatively constant after 500 s with no fluctuations. Moreover, power draw maintained an average of 750 W (1 PK) with no variations, exhibiting an inverse relationship with Tsupply. The maximum energy consumption recorded during the experiment was 1,373 kWh. As expected based on fundamental thermodynamic principles, the energy usage showed a direct proportional relationship with the total runtime of the system. That is, the longer the AC system was engaged, the higher the total energy required to maintain the cooling effect. Overall, microcontroller-based split inverter AC enables real-time performance monitoring and efficient operation, representing a promising technology.

Keywords

Inverter AC System Microcontroller Monitoring Performance Efficiency

Article Details

How to Cite
Negara, I., Anakottapary, D., Midiani, L., Temaja, I., & Santosa, I. (2023). Experimental Study of Cooling Performance and Electrical Parameters in a Microcontroller-Driven Inverter AC System. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 23(2), 81-90. https://doi.org/https://doi.org/10.24036/invotek.v23i2.1105

References

  1. S. Srihanto, M. Sugiri, and B. D. Kurniawan, “ANALISA UNJUK KERJA AC INVERTER DAN NON INVERTER TERHADAP VARIASI PENGATURAN SUHU PADA REMOTE (21, 22, 23, 24, 25° C),” Pros. SNITT POLTEKBA, vol. 5, pp. 119–125, 2021.
  2. Y. A. Elthokaby, I. Abdelsalam, N. Abdel-Rahim, and I. M. Abdealqawee, “Model-predictive control based on Harris Hawks optimization for split-source inverter,” Bull. Electr. Eng. Informatics, vol. 11, no. 4, pp. 2348–2358, 2022, doi: https://doi.org/10.11591/eei.v11i4.3823.
  3. I. G. A. Negara, “Analisis Monitoring Temperatur dan Kelembaban Udara Alami Berbasis Teknologi Mikrokontroler,” J. Inov. Teknol. dan Edukasi Tek., vol. 3, no. 1, pp. 32–39, 2023, doi: 10.17977/um068v3i12023p32-39.
  4. F. Mayrullah, “ANALISIS PENGARUH PERUBAHAN SUHU EVAPORATOR TERHADAP KINERJA KOMPRESOR AC INVERTER,” EEICT (Electric, Electron. Instrumentation, Control. Telecommun., vol. 3, no. 1, 2020, doi: http://dx.doi.org/10.31602/eeict.v3i1.4534.
  5. M. M. Dwinanto, W. Bunganaen, and I. H. Syaifullah, “Studi Kinerja Teoritis Dan Konsumsi Energi Pengkondisian Udara Menggunakan R22 Dan R290,” LONTAR J. Tek. Mesin Undana, vol. 8, no. 01, pp. 91–98, 2021.
  6. Y. C. Silaban, S. A. Suwarlan, and V. Agustian, “Pentingnya Inverter System Air Conditioner pada Penghawaan Ruangan Showroom Kota Batam,” J. Archit. Des. Dev., vol. 3, no. 1, pp. 45–51, 2022, doi: http://dx.doi.org/10.37253/jad.v3i1.4264.
  7. F. Fauzan and A. Badarudin, “Performansi Sistem AC Split Inverter Menggunakan Alat Ekspansi Pipa Kapiler dan Electronic Expansion Valve (EEV),” in Prosiding Industrial Research Workshop and National Seminar, 2022, vol. 13, no. 01, pp. 227–233. doi: https://doi.org/10.35313/irwns.v13i01.4254.
  8. P. Zi et al., “Modeling method of variable frequency air conditioning load,” Energy Reports, vol. 9, pp. 1011–1017, 2023, doi: https://doi.org/10.1016/j.egyr.2022.11.035.
  9. Q. Li, Y. Zhao, Y. Yang, L. Zhang, and C. Ju, “Demand-response-oriented load aggregation scheduling optimization strategy for inverter air conditioner,” Energies, vol. 16, no. 1, p. 337, 2022, doi: https://doi.org/10.3390/en16010337.
  10. B. Bohara, B. Pandey, R. Pungaliya, S. C. Patwardhan, and R. Banerjee, “Experimental Study of the Model Predictive Control for a Residential Split Air Conditioner,” e-Prime-Advances Electr. Eng. Electron. Energy, vol. 3, p. 100099, 2023, doi: https://doi.org/10.1016/j.prime.2022.100099.
  11. A. S. Ismailov and Z. B. Jo‘Rayev, “Study of arduino microcontroller board,” Sci. Educ., vol. 3, no. 3, pp. 172–179, 2022.
  12. N. K. Paul, D. Saha, K. Biswas, S. Akter, R. T. Islam, and M. H. Bhuyan, “Smart Trash Collection System–An IoT and Microcontroller-Based Scheme,” J. Eng. Res. Reports, vol. 24, no. 11, pp. 1–13, 2023, doi: 10.9734/JERR/2023/v24i11849.
  13. L. Parra, S. Viciano-Tudela, D. Carrasco, S. Sendra, and J. Lloret, “Low-cost microcontroller-based multiparametric probe for coastal area monitoring,” Sensors, vol. 23, no. 4, p. 1871, 2023, doi: https://doi.org/10.3390/s23041871.
  14. A. J. Prasetyo, H. Wihangga, M. Ulum, D. Rahmawati, R. Alfita, and R. V. Nahari, “Analisa Kinerja Pada Sistem Alat Peraga AC Inverter Tipe Wall Split Kapasitas 0, 5 PK,” SinarFe7, vol. 5, no. 1, pp. 106–113, 2022.
  15. B. Hidayati, F. Irawan, and Y. Biola, “Analisis kelembaban udara pada AC Split Wall usia pakai 8 tahun dengan kapasitas 18000 Btu/hr,” AUSTENIT, vol. 13, no. 1, pp. 8–12, 2021, doi: http://doi.org/10.5281/zenodo.4735758.
  16. E. Erham and R. N. Inten, “Design of a new online monitoring system of COP based on Arduino Uno with application to split A/C,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 830, no. 4, p. 42030. doi: 10.1088/1757-899X/830/4/042030.
  17. A. Bushnag, “Air quality and climate control arduino monitoring system using fuzzy logic for indoor environments,” in 2020 International conference on control, automation and diagnosis (ICCAD), 2020, pp. 1–6. doi: 10.1109/ICCAD49821.2020.9260514.
  18. R. Saha, S. Biswas, S. Sarmah, S. Karmakar, and P. Das, “A working prototype using DS18B20 temperature sensor and arduino for health monitoring,” SN Comput. Sci., vol. 2, pp. 1–21, 2021, doi: https://doi.org/10.1007/s42979-020-00434-2.
  19. A. Andriana, Z. Zuklarnain, and H. Baehaqi, “Sistem kWH Meter Digital Menggunakan Modul PZEM-004T,” J. Tiarsie, vol. 16, no. 1, pp. 29–34, 2019, doi: https://doi.org/10.32816/tiarsie.v16i1.43.
  20. S. Nirwan and M. S. Hafidz, “Rancang Bangun Aplikasi Untuk Prototipe Sistem Monitoring Konsumsi Energi Listrik Pada Peralatan Elektronik Berbasis Pzem-004T,” J. Tek. Inform., vol. 12, no. 2, pp. 22–28, 2020.
  21. Q. Al-Yasiri, M. Szabó, and M. Arıcı, “A review on solar-powered cooling and air-conditioning systems for building applications,” Energy Reports, vol. 8, pp. 2888–2907, 2022, doi: https://doi.org/10.1016/j.egyr.2022.01.172.
  22. M. Kong, B. Dong, R. Zhang, and Z. O’Neill, “HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study,” Appl. Energy, vol. 306, p. 117987, 2022, doi: https://doi.org/10.1016/j.apenergy.2021.117987.
  23. R. Santosh, G. Kumaresan, S. Selvaraj, T. Arunkumar, and R. Velraj, “Investigation of humidification-dehumidification desalination system through waste heat recovery from household air conditioning unit,” Desalination, vol. 467, pp. 1–11, 2019, doi: https://doi.org/10.1016/j.desal.2019.05.016.
  24. A. S. Saleh, S. Djamila, A. Bahariawan, and L. Komariah, “The design and build of ohmic heated hydro distillation for the essential oil extraction of eucalyptus leaves,” in IOP Conference Series: Earth and Environmental Science, 2021, vol. 672, no. 1, p. 12017. doi: 10.1088/1755-1315/672/1/012017.
  25. M. Alawadhi and P. E. Phelan, “Review of Residential Air Conditioning Systems Operating under High Ambient Temperatures,” Energies, vol. 15, no. 8, p. 2880, 2022, doi: https://doi.org/10.3390/en15082880.
  26. Q. Deng, D. Liu, Z. Zhou, and S. Ma, “The effect of air-conditioner operation modes on the energy-saving capacity of external wall insulation in residential buildings,” Energy Explor. Exploit., vol. 39, no. 2, pp. 620–636, 2021, doi: https://doi.org/10.1177/014459871989582.