Main Article Content

Abstract

The use of an air conditioning system requires large amounts of electrical energy to carry out repeated vapor compression cycles. The use of an evaporative cooling system in this research is by spraying condensate water on the condenser, which is one solution to absorb condenser heat. Another thing that can be done is to reset the fan speed on the condenser to cool it. Resetting the fan speed on the condenser can also help improve AC performance and reduce electrical energy use. The test was carried out by modifying the 1 Pk R-410a AC split condenser by installing 6 nozzles, 2 rows of 3 columns and a DC pump to spray water on the condenser. The independent variables of this research are spraying position and fan speed. The result obtained from the research is an increase in COP by 35% and a reduction in electrical power usage by 15% by using additional water spray with a nozzle behind the condenser both when blowing the full blower and when the blower blowing speed is reduced by 75%. The use of evaporative systems in air conditioning technology is a promising solution to achieve sustainable and efficient cooling solutions.

Keywords

Modified Condenser Coefficient of Performance (COP) Nozzle Fan Speed

Article Details

How to Cite
Gde Widiantara, I. B., Negara, I., & Bangse, K. (2024). Embracing the Evaporative System in Air Conditioning Technology for Efficient Cooling Solutions. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 23(2), 129-136. https://doi.org/https://doi.org/10.24036/invotek.v23i2.1133

References

  1. M. Alhamdo, M. Theeb, and J. Abdulhameed, “Using Evaporative Cooling Methods for Improving Performance of an Air-cooled Condenser,” Univers. J. Mech. Eng., vol. 3, pp. 94–106, May 2015, doi: 10.13189/ujme.2015.030304.
  2. Y. Al Horr, B. Tashtoush, N. Chilengwe, and M. Musthafa, “Performance assessment of a hybrid vapor compression and evaporative cooling fresh-air-handling unit operating in hot climates,” Processes, vol. 7, no. 12, p. 872, 2019, doi: https://doi.org/10.3390/pr7120872.
  3. I. G. A. Negara, A. Mulawarman, I. G. Santosa, and L. P. I. Midiani, “STUDI EKSPERIMENTAL GENERATOR ELEKTRIK BERBAHAN BAKAR BIOGAS GUNA MENDUKUNG NET ZERO EMISSION (NZE): Indonesia,” J. Rekayasa Mesin, vol. 14, no. 2, pp. 689–700, 2023, doi: https://doi.org/10.21776/jrm.v14i2.1431.
  4. I. G. A. Negara, D. S. Anakottapary, L. P. I. Midiani, I. W. Temaja, and I. D. M. C. Santosa, “Experimental Study of Cooling Performance and Electrical Parameters in a Microcontroller-Driven Inverter AC System,” INVOTEK J. Inov. Vokasional dan Teknol., vol. 23, no. 2, pp. 81–90, 2023, doi: https://doi.org/10.24036/invotek.v23i2.1105.
  5. I. Nitya Santhiarsa, I. Praharsini, I. Suryawati, and P. Pratikto, “Analysis of Mechanical Strength of Weight Fraction Variation Sugar Palm Fiber as Polypropylene-Elastomer Matrix Reinforcement of Hybrid Composite,” Eastern-European J. Enterp. Technol., vol. 5, no. 12, p. 113, 2021, doi: 10.15587/1729-4061.2021.238507.
  6. I. G. N. N. Santhiarsa, I. G. A. A. Praharsini, and I. G. A. A. Suryawati, “Weight Fraction Effect of Sugar Palm Fiber as Polypropylene-Elastomer Matrix Reinforcement on Fire Resistance of Hybrid Composite,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 2 SE-Articles, pp. 649–654, Apr. 2022, doi: 10.18517/ijaseit.12.2.15848.
  7. I. N. Suamir, I. Wirajati, I. Santosa, I. D. M. Susila, and I. T. Putra, “Experimental study on the prospective use of PV panels for chest freezer in hot climate regions,” in Journal of Physics: Conference Series, 2020, vol. 1569, no. 3, p. 32042. doi: 10.1088/1742-6596/1569/3/032042.
  8. I. W. Temaja, M. E. Arsana, and L. P. I. Midiani, “Kajian Eksperimental Campuran R-32/R-290 Pengganti Refrigeran R-32 Pada AC Split Domestik,” Matrix J. Manaj. Teknol. dan Inform., vol. 8, no. 3, pp. 74–78, 2018, doi: http://dx.doi.org/10.31940/matrix.v8i3.1068.
  9. P. W. Sunu, D. S. Anakottapary, I. D. M. Susila, I. Santosa, and I. N. E. Indrayana, “Study of thermal effectiveness in shell and helically coiled tube heat exchanger with addition nanoparticles,” in Journal of Physics: Conference Series, 2020, vol. 1569, no. 3, p. 32038. doi: 10.1088/1742-6596/1569/3/032038.
  10. B. Porumb, P. Ungureşan, L. F. Tutunaru, A. Şerban, and M. Bălan, “A review of indirect evaporative cooling technology,” Energy procedia, vol. 85, pp. 461–471, 2016, doi: https://doi.org/10.1016/j.egypro.2015.12.228.
  11. R. R. Patel and B. K. Sheth, “Evaporative cooling of water for indirect air cooling,” in Afro-Asian International Conference on Science, Engineering & Technology, 2015, pp. 266–269.
  12. M. R. Syahnan and R. I. Mainil, “Potensi Air Kondensat Sebagai Media Pendingin Untuk Aplikasi Modul Evaporative Cooling Terhadap Performansi AC Split 1 PK,” Jom FTEKNIK, vol. 3, no. 2, 2016.
  13. B. S. T. Silalahi, T. A. Ajiwiguna, and M. R. Kirom, “Studi Pendingin Evaporatif Untuk Pendinginan Air,” eProceedings Eng., vol. 5, no. 3, pp. 5919–5924, 2018.
  14. A. O. Elsayed, “Management of Condenser Fan Speed and its Influence on the Split Air Conditioner Performance,” Glob. J. Energy Technol. Res. Updat., vol. 6, pp. 41–48, 2019, doi: https://doi.org/10.15377/2409-5818.2019.06.4.
  15. Y. Al Horr, B. Tashtoush, and N. Chilengwe, “Experimental Analysis of Mist Injection and Water Shower Indirect Evaporative Cooling in Harsh Climate.,” Int. J. Heat Technol., vol. 38, no. 1, 2020, doi: 10.18280/ijht.380126.
  16. B. Porumb, M. Bălan, and R. Porumb, “Potential of indirect evaporative cooling to reduce the energy consumption in fresh air conditioning applications,” Energy Procedia, vol. 85, pp. 433–441, 2016, doi: https://doi.org/10.1016/j.egypro.2015.12.224.
  17. F. Bagheri, M. Ali Fayazbakhsh, and M. Bahrami, “Investigation of Optimum Refrigerant Charge and Fans’ Speed for a Vehicle Air Conditioning System,” J. Therm. Sci. Eng. Appl., vol. 9, no. 1, p. 11014, 2017, doi: https://doi.org/10.1115/1.4034852.
  18. X. Zhu et al., “Air-conditioning condenser integrated with a spray system utilizing condensate water,” 2015.
  19. A. O. Elsayed and A. S. Hariri, “Effect of condenser air flow on the performance of split air conditioner,” in World Renwable Energy Congress, 2011, pp. 8–13.
  20. K. Ridhuan and I. G. A. Juniawan, “Pengaruh media pendingin air pada kondensor terhadap kemampuan kerja mesin pendingin,” Turbo J. Progr. Stud. Tek. Mesin, vol. 3, no. 2, 2014, doi: http://dx.doi.org/10.24127/trb.v3i2.11.
  21. S. Samik, P. Setiarso, and I. G. M. Sanjaya, “Pemanfaatan Air Buangan Ac (Air Conditioner) Sebagai Pengganti Akuades,” Indones. Chem. Appl. J., vol. 1, no. 1, pp. 29–36, 2017, doi: https://doi.org/10.26740/icaj.v1n1.p29-36.
  22. H. Riyanto and B. Maryanti, “PENGARUH PUTARAN FAN KONDENSOR TERHADAP PERFORMANSI SISTEM REFRIGERASI DENGAN MENGGUNAKAN REFRIGERAN HIDROKARBON,” TRANSMISI, vol. 12, no. 1, pp. 25–34, 2016, doi: https://doi.org/10.26905/jtmt.v12i1.4489.