Main Article Content

Abstract

The intensity of earthquakes increases from time to time both in number and in strength; recently, in Indonesia, damage to buildings by earthquake acceleration usually begins with damage to walls. Besides having a function as a barrier between spaces in construction, walls also have an essential role in increasing a building structure's rigidity. Mortar, which is usually used as a wall and plastering, has a role as a binder between the walls themselves' components so that quality mortar will help the walls be stronger. This research aims to produce the ideal mortar mixture with low price, high quality, and easy to obtain material. The proposed added composition was husk ash and Fosroc SP 337 additive, varied based on cement's weight. The yield of mortar with added ingredients will be compared with ordinary mortar without added ingredients. The specimens' manufacture used 20 samples of 5cm x 5cm x 5cm cubes with five variations of mortar composition, and mortar compressive strength testing was carried out at 7, 14, and 28 days of age. The maximum compressive strength obtained for mortar with the addition of 15% rice husk ash, 1% fosroc sp 337, and the combination of the two experienced an increase in the compressive strength value, the ratio of the average compressive strength of the mortar, the highest average compressive strength results in the mixture 1 PPC cement: 4 Sand with the addition of 15% rice husk ash: 1% fosroc sp 337 with an average compressive strength yield of 116.6 kg / cm² at the age of 7 days, 145.6 kg / cm² at the period of 14 days and 154.6 kg / cm² at the age of 28 days.

Keywords

Compressive Strength Rice Husk Ash Earthquake Intensity

Article Details

How to Cite
Putra, R. R. (2021). Ideal mortar composition with rice husk ash addition and addictive for maximum mortal strength. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 21(1), 45-68. https://doi.org/https://doi.org/10.24036/invotek.v21i1.834

References

  1. [1] D. H. Natawidjaja, “Major Bifurcations, Slip Rates, and A Creeping Segment of Sumatran Fault Zone in Tarutung-Sarulla-Sipirok-Padangsidempuan, Central Sumatra, Indonesia,” Indones. J. Geosci., vol. 5, no. 2, 2018, doi: 10.17014/ijog.5.2.137-160.
  2. [2] H. R. P. Arajuli, "SEISMIC HAZARD ANALYSIS FOR INDONESIA Rusnardi Rahmat P UTRA *,** Junji K IYONO *** Yusuke O NO ****," Geophys. J. Int., 2012.
  3. [3] D. H. Natawidjaja, K. Bradley, M. R. Daryono, S. Aribowo, and J. Herrin, "Late Quaternary eruption of the Ranau Caldera and new geological slip rates of the Sumatran Fault Zone in Southern Sumatra, Indonesia," Geoscience Letters, vol. 4, no. 1. 2017, DOI: 10.1186/s40562-017-0087-2.
  4. [4] D. Lange, F. Tilmann, T. Henstock, A. Rietbrock, D. Natawidjaja, and H. Kopp, "Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network," Solid Earth, vol. 9, no. 4, 2018, doi: 10.5194/se-9-1035-2018.
  5. [5] R. R. Putra, J. Kiyono, and A. Furukawa, "Vulnerability assessment of non engineered houses based on damage data of the 2009 Padang earthquake in Padang city, Indonesia," Int. J. GEOMATE, 2014, doi: 10.21660/2014.14.140714.
  6. [6] N. Riaz, S. L. Wolden, D. Y. Gelblum, and J. Eric, "killing me softly: cause and mechanisms of arterial stiffness recent highlights of atvb," Arter. Thromb Vasc Biol, vol. 118, no. 24, 2016.
  7. [7] M. Fajriana, P. ST, and N. Nasution, “PERBANDINGAN MUTU ANTARA MORTAR PASANGAN BATA KOMPOSISI 1 KAPUR : 2 SEMEN MERAH : 3 PASIR DENGAN MORTAR PASANGAN BATA KOMPOSISI 1 SEMEN PORTLAND : 4 PASIR,” Menara J. Tek. Sipil, vol. 4, no. 2, 2009, doi: 10.21009/jmenara.v4i2.7912.
  8. [8] S. W. I. Pratama, N. Rauf, E. Juarlin, S. W. I. Pratama, N. Rauf, and E. Juarlin, “Pembuatan dan Pengujian Kualitas Semen Portland Yang Diperkaya Silikat Abu Ampas Tebu ( Fabrication and Quality Test of Cement Portland With Enriched by Silicate Sugarcane Bagasse Ash ),” J. Fis. FMIPA Unhas, 2014.
  9. [9] Krisnamurti, W. K. Aswatama, and W. Y. Widiarti, “Pengaruh Komposisi Material UHPC Terhadap Perilaku Kuat Tekan Mortar Beton,” Semin. Nas. X-2014 Tek. Sipil ITS Surabaya, no. April 2017, 2014.
  10. [10] A. A. Husin and R. Setiadji, “Pengaruh Penambahan Foam Agent Terhadap Kualitas Bata Beton,” J. Pemukim., vol. 3, no. 3, 2008.
  11. [11] A. P. Sihombing, Y. Afrizal, and A. Gunawan, “PENGARUH PENAMBAHAN ARANG BATOK KELAPA TERHADAP KUAT TEKAN MORTAR,” Inersia, J. Tek. Sipil, vol. 10, no. 1, 2019, doi: 10.33369/ijts.10.1.31-38.
  12. [12] H. Manullang, F. Supriani, and A. Gunawan, “PENGARUH PENAMBAHAN ARANG SERBUK KAYU GERGAJI TERHADAP KUAT TEKAN MORTAR,” Inersia, J. Tek. Sipil, vol. 11, no. 1, 2019, doi: 10.33369/ijts.11.1.7-12.
  13. [13] M. Meliyana, C. Rahmawati, and L. Handayani, “Sintesis Silika Dari Abu Sekam Padi Dan Pengaruhnya Terhadap Karakteristik Bata Ringan,” Elkawnie, vol. 5, no. 2, 2019, doi: 10.22373/ekw.v5i2.5533.
  14. [13] SNI 6882:2014 Standar Nasional Indonesia Spesifikasi mortar untuk pekerjaan unit pasangan Standard Specification for Mortar for Unit Masonry.
  15. [14] [SNI 03-6882-2002. 2002. Spesifikasi Mortar untuk Pekerjaan Pasangan. Jakarta: Pustran-Balitbang PU
  16. [15] SNI 15-7064-2004. 2004 Semen Portland Komposit. Jakarta: Badan Standar Nasional.
  17. [16] “Pengaruh Penggunaan Abu Sekam Padi terhadap Sifat Mekanik Beton Busa Ringan,” J. Tek. Sipil ITB, vol. 24, no. 2, 2017, doi: 10.5614/jts.2017.24.2.4.
  18. [17] D. Zebua and K. Sinulingga, “PENGARUH PENAMBAHAN ABU SEKAM PADI SEBAGAI CAMPURAN TERHADAP KEKUATAN BATU BATA,” EINSTEIN e-JOURNAL, vol. 6, no. 2, 2019, doi: 10.24114/einstein.v6i2.12076.
  19. [18] L. F. Aprida, D. Dermawan, and R. Bayuaji, “Identifikasi Potensi Pemanfaatan Limbah Karbit dan Abu Sekam Padi sebagai Bahan Alternatif Pengganti Semen,” Conf. Proceeding Waste Treat. Technol., vol. 4, no. 2, 2015.
  20. [19] A. Darmawan, D. Anggraini, and G. Gunawan, “Pengaruh Substitusi Semen oleh Silika Abu Sekam Padi terhadap Kuat Tekan dan Suhu Reaksi Semen Portland,” J. Kim. Sains dan Apl., vol. 11, no. 1, 2008, doi: 10.14710/jksa.11.1.15-19.