Main Article Content


The development of technology that has penetrated the industrial sector is very rapid. Many industrial fields apply the use of MIG (Metal Inert Gas) welding for various jobs in steel construction, especially mild carbon steel. MIG welding has good welding results and fast welding time efficiency. The purpose of this study is to analyze the tensile strength of welded joints on low carbon steel using MIG welding. The experimental method used in this study is to perform MIG welding on low-carbon steel plate profiles. The welded carbon steel is used as a test specimen and is formed according to the ASTM E8-M standard. Tensile testing is performed using a Shimadzu UH-300 kN type tensile testing machine. From this study, the tensile strength value of the test specimen welded by MIG (Metal Inert Gas) welding is higher than the tensile strength of the parent metal (low carbon steel), so this shows the strength of the weld joint. The average value of tensile strength on the test specimen is (σ) 507.40 N/mm2 and average strain (ɛ) 3.63%. The MIG welding process, between the base metal and filler metal with different chemical compositions, can cause mixing and a dilution effect of two compositions.


MIG Welding, Welded Joint, Low Carbon Steel, Tensile Strength

Article Details

How to Cite
Nurdin, H., Purwantono, P., & Umurani, K. (2021). Tensile strength of welded joints in low carbon steel using metal inert gas (MIG) welding. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 21(3), 175-180.


  1. K. Weman, Welding processes handbook. Elsevier, 2011.
  2. P. Kah, R. Suoranta, and J. Martikainen, “Advanced gas metal arc welding processes,” Int. J. Adv. Manuf. Technol., vol. 67, no. 1, pp. 655–674, 2013.
  3. T. Lienert, T. Siewert, S. Babu, V. Acoff, and S. W. P. Specifications, ASM handbook, volume 6A: welding fundamentals and processes. ASM International Materials Park, OH, 2011.
  4. A. Wari, H. Nurdin, and K. Z. Ya, “Porosity Defect Analysis in ST 37 Steel Welding Joints Using the Dye Penetrant Method,” Teknomekanik, vol. 3, no. 1, pp. 1–8, 2020.
  5. S. R. Patil and C. A. Waghmare, “Optimization of MIG welding parameters for improving strength of welded joints,” Int J Adv Engg Res Stud.-Sept, vol. 14, p. 16, 2013.
  6. E. I. Fauzi, Z. Samad, M. C. Jamil, N. M. Nor, and G. P. Boon, “Parametric modeling of metal inert gas (MIG) welding process using second-order regression model analysis,” J. Adv. Manuf. Technol. JAMT, vol. 12, no. 1 (2), pp. 367–382, 2018.
  7. H. N. Irzal, “Analisis Kekuatan Tarik Sambungan Las Pada Pipa Baja Karbon Menggunakan Elektroda E 7018 Dengan Posisi Pengelasan 5G,” proceedingfptk, vol. 437, 2015.
  8. A. Anders, “Tracking down the origin of arc plasma Science-II. Early continuous discharges,” IEEE Trans. Plasma Sci., vol. 31, no. 5, pp. 1060–1069, 2003.
  9. H. B. Cary and S. C. Helzer, Modern Welding Technology, 2005. NJ: Pearson Education.
  10. D. R. Jones and M. F. Ashby, Engineering materials 2: an introduction to microstructures and processing. Butterworth-Heinemann, 2012.
  11. K. Weman and G. Lindén, MIG welding guide. Woodhead Publishing, 2006.
  12. H. Latifi Jr, “Advanced orbital pipe welding,” 2012.
  13. A. Standard, “E8/E8M-08,",” Stand. Test Methods Tens. Test. Met. Mater. ASTM Int. West Conshohocken PA, 2008.
  14. P. K. Yadav, M. Abbas, and S. Patel, “Analysis of heat affected zone of mild steel specimen developed due to MIG welding,” Int. J. Mech. Eng. Robot. Res., vol. 3, no. 3, p. 399, 2014.
  15. A. S. Shahi and S. Pandey, “Modelling of the effects of welding conditions on dilution of stainless steel claddings produced by gas metal arc welding procedures,” J. Mater. Process. Technol., vol. 196, no. 1–3, pp. 339–344, 2008.
  16. K. Pal and S. K. Pal, “Effect of pulse parameters on weld quality in pulsed gas metal arc welding: a review,” J. Mater. Eng. Perform, vol. 20, no. 6, pp. 918–931, 2011.